
Demosaicing with The Bayer Pattern

Rémi Jean
1

Department of Computer Science,

University of North Carolina

Abstract

Digital cameras are becoming more and more

powerful but even if they are smaller, the CCD sensors

still associate only one color to each pixel. This mosaic of

color, called The Bayer Pattern, must be processed in order

to obtain a high resolution color image. Each pixel of this

interpolated image has a full spectrum of color based on

the colors of the surrounding pixels. This process is

referred as demosaicing or demosaicking. This report

presents the work I have done for the final project, which

was to implement and compare different commonly used

demosaicing methods.

1 Introduction

The resolutions for digital cameras are becoming

bigger and bigger but the principle is still the same. These

cameras are based on a charge coupled device (CCD) array

and each sensor on the CCD captures only one sample of

the color spectrum.

Digital color cameras generally use a Bayer mask

over the CCD. A Bayer filter mosaic is a color filter array

(CFA) for arranging Red Green Blue (RGB) color filters

on a square grid of photosensors. [Fig. 1] Each square of

four pixels has one filtered red, one blue, and two green.

This is because the human eye is more sensitive to green

than either red or blue.

 We now have a mosaiced image; at each pixel,

there is only one spectral measurement, which means that

the other colors have to be estimated according to the

neighboring colors in order to produce a high resolution

color image. This process is referred to as demosaicing.

The mosaiced image is the first image, we now will have

to perform interpolations on this image. There are many

different methods to do this, of which i am going to

present four and compare them according to a similarity

measurement: the Peak Signal to Noise Ratio (PSNR) in

dB. I will present first a nearest neighbor interpolation and

then several other methods that involves averaging such as

a bilinear interpolation, a Fast High Quality Linear

1. e-mail: rjean@email.unc.edu

Interpolation and a Gradient based interpolation. The

comparison of the different algorithms is based on an

image by Kodak. It provides an excellent cross-section of

environments and also demosaicing "trouble-spots", such

as fine details and picket fences.

2 Demosaicing methods

2.1 Pixel Doubling Interpolation

 Since we need 3 colors for each pixel in order to

produce a high resolution color image, we first need to

determine 2 colors for each pixel. In this method of

interpolation, we only pay attention to the nearest neighbor

of the actual pixel. There is no averaging to determine the

spectrum of this pixel; instead the demosaiced values are

simply copied from one of its nearest neighbors. For

instance, the blue value captured at a sensor becomes the

blue for every pixel in its 2x2 Bayer pattern block. Since it

is the same for the red color and it is a little bit different

for the green, we have to choose the color we want

between the 2 green pixels in the 2x2 bayer pattern block

for a red or blue pixel. This is an arbitrary choice.

2x2 Bayer Pattern block

Top left pixel: (R,G,B) = (R1,G2,B4)

Top right pixel: (R,G,B) = (R1,G2,B4)

Bottom left pixel: (R,G,B) = (R1,G3,B4)

Bottom right pixel: (R,G,B) = (R1,G3,B4)

Noting that there are only two different colors for a 2x2

Bayer pattern block. We can without measuring say that it

is a bad method but it can be used as a baseline for

comparisons.

Fig.1 - Bayer Pattern

2.2 Bilinear Interpolation

 In this method of interpolation, instead of

considering only 4 pixels like the 2x2 Bayer pattern block

we actually calculate the average on each pixel depending

on its position in the Bayer Pattern in order to determine

the spectrum of the particular pixel. For a pixel, we

consider its 8 direct neighbors and then we determine the 2

missing colors of this pixel by averaging the colors of the

neighboring pixels.

We actually have 4 different cases of averaging which are

the red pixel, the blue pixel, the green pixel on a red row

and the green pixel on the blue row. On each of them the

averaging will be slightly different.

Pixel R33 (red pixel): Red = R33

Green = (G23+G34+G32+G43) / 4

Blue = (B22+B24+B42+B44) / 4

Pixel B44 (blue pixel): Blue = B44

Green = (R33+R35+R53+R55) / 4

Red = (R33+R35+R53+R55) / 4

Pixel G43 (Green in a blue row): Green = G43

Red = (R33+R53) / 2

Blue = (B42+B44) / 2

Pixel G34 (Green in a red row): Green = G34

Red = (R33+R35) / 2

Blue = (B24+B44) / 2

Like the pixel doubling interpolation, this method allows

us to determine the red, green and blue color for each pixel.

We also expect better results than the pixel doubling

interpolation because we calculate the average of the

neighbor pixels instead of just copying the values. The

missing component will then be closer to the true values.

 2.3 Gradient Based Interpolation

 This is the method proposed by Laroche and

Prescott. There are 3 steps in this method: the first is to

compute the luminance on each pixel, and then the second

and the third are the interpolation of the color differences:

Red minus Green and Blue minus Green. We will need

those two interpolations in order to determine the red and

blue channel for each pixel. This is a direct consequence of

the fact that the human eye is sensitive to luminance

changes.

In the first step, we have only to determine the luminance

for the red and blue channel. The lumiance is the green

channel so we consider, on the green pixel, that the

luminance is actually the intensity of the pixel. On a red or

blue pixel, the luminance of this pixel is determined by

knowing if the pixel is on a vertical edge or on a horizontal

one. In order to know if we have an edge, we can calculate

2 parameters: α and β, which depends on whether we are

on a red or blue pixel.

If we are on a blue pixel, for example B44, we have

α = abs[(B42 + B46) / 2 - B44] (vertical edge)

β = abs[(B24 + B64) / 2 - B44] (horizontal edge)

Then using those 2 values, we can estimate the missing

green value.

If α < β (vertical edge), G44 = (G43+G45) / 2

If α > β (horizontal edge), G44 = (G34+G54) / 2

If α = β (no edge), G44 = (G43+G45+ G34+G54) / 4

Similarly, for R33, we have

α = abs[(R31 + R35) / 2 - R33] (vertical edge)

β = abs[(R13 + R53) / 2 - R33] (horizontal edge)

If α < β (vertical edge), G33 = (G32+G34) / 2

If α > β (horizontal edge), G33 = (G23+G43) / 2

If α = β (no edge), G33 = (G32+G34+ G23+G43) / 4

At this point we know exactly the luminance values for

each pixel (green channel), we just have to determine the

blue and red channel by computing the differences

between those channels and the luminance channel. Let’s

note: Dxy = Cxy - Lxy. (C: Red or Blue depending on

which one is to be computed, L: Luminance)

We have for red and blue:

Red: R34 = G34 + (D33 + D35)/2

R43 = G43 + (D33 + D35)/2

R44 = G44 + (D33 + D35 + D53 + D55)/4

Blue: B34 = G34 + (D24 + D44)/2

B43 = G43 + (D42 + D44)/2

B33 = G33 + (D22 + D24 + D42 + D44)/4

In this method, we determine the missing color values by

averaging and by considering the different edges that we

encounter in the image and also by computing the

luminance. We can expect to have more accurate colors in

output especially on the edges. When we find an edge, we

consider the pixels along the edge instead of considering

all the neighbors.

2.4 High Quality Linear Interpolation

 Malvar et al proposed a method to demosaic an

image using a Bayer Pattern. This is actually a set of 8

kernels [fig.2] that we need to normalise and then apply to

the mosaiced image in order to demosaic it. The choice of

the kernel depends on the position of the pixel.

There are 8 cases:

2 - To determine the red and green values on a blue pixel,

2 - To determine the blue and green values on a red pixel,

4 - To determine the red and blue values on a green pixel.

(2 for a green pixel in a “red row” and 2 in a “blue row”)

Fig.2 - 8 kernels for a High quality linear interpolation

By looking at the different kernels, we can see that this is

similar to the previous method with the gradient based

interpolation. To determine a color, we calculate the

average of the neighbor with the same color, but we also

incorporate the green channel into each of them. This

creates a link between the channels, and thus the rendering

of the edges should be better than a basic linear

interpolation (nearest neighbor or bilinear)

3 Results

To determine if the results are good, we use the

Peak Signal to Noise Ratio (PSNR). We will measure the

quality difference in dB.

When we compute the RMSE, we use only one channel,

the red. The higher the PSNR is, the better the results are.

Basically it compares the value of a red pixel and the value

of the same pixel on the ground truth image.

By applying the different interpolation methods to the

original mosaiced image we have the following results:

Interpolation method PSNR

Pixel doubling 24.15

Bilinear Interpolation 27.67

Gradient based

Interpolation

28.69

High Quality Linear

Interpolation

33.39

Those results show that the high quality linear

interpolation has the better results on this particular

original image. This difference is obvious when we look at

the demosaiced images [Fig.3]. The pixel doubling

approach is definitely not the right one. The other

approaches have pros and cons.

Those algorithms are going to be intergrated into a digital

camera so we don’t have to consider only the the

demosaiced image, we have to be concerned about the

speed of execution and also the memory usage. We don’t

want to wait for 10 seconds between each pictures...

Concerning the speed of those interpolations, the High

Quality Linear Interplation is powerful with great results

but it’s time consuming due to all the calculus we need to

do for a single pixel. It’s even worse for the Gradient

based interpolation because we first need to calculate all

the green pixels, then compute the other colors and the

results are not that good compare to the High Quality

Linear Interpolation. Finally, the bilinear filter is very fast

but the results are not really good.

The digital cameras can take pictures that are becoming

bigger and bigger and so in order to do treatments on those

pictures we need memory. For all the interpolation

methods, we need to have a memory to store the image and

also a memory to store the information about the kernel.

All those interpolations are similar concerning the memory

usage, the only difference between those interpolations

about the memory is the space they need to store the

kernels. For the bilinear and the gradient based

interpolation, they almost do not need any additionnal

memory because it’s only some small calculus. The high

quality linear interpolation need a bit more storage because

it needs to store the 8 kernels in addition to the memory

needed for the calculus.

Fig.3-a Pixel Doubling interpolation

Fig.3-b Bilinear Interpolation

Fig.3-c Gradient Based Interpolation

Fig.3-d High Quality Linear Interpolation

About the performances of all those algorithms, we can

notice that the weakness appears when we have to deal

with edges. [Fig4] presents the influence of those

demosaicing algorithms on another image.

Fig.4 top: original image, middle left: pixeldoubling

middle right: bilinear, bottom left: gradient,

bottom right: High Quality

Interpolation method PSNR

Pixel doubling 23.35

Bilinear Interpolation 27.3

Gradient based

Interpolation

28.47

High Quality Linear

Interpolation

33.08

By looking at those results, it seems that the High Quality

Interpolation filter is the one who produces the better

results.

Finally [Fig5] presents the influence of those demosaicing

algorithms on an image where there is only one edge.

Fig. 5 one edge image

Interpolation method PSNR

Pixel doubling 27.87

Bilinear Interpolation 31.89

Gradient based

Interpolation

27.75

High Quality Linear

Interpolation

28.93

By looking at those results, it seems that the bilinear filter

is the one who handles the better the edges in this image.

But we have to be careful because this is not the kind of

image that are supposed to be handled by those

interpolations. That is why the results cannot be compared

to the previous ones.

4 Conclusion

 In conclusion we can say that demosaicing is not

a trivial problem, because we have to interpolate a lot of

information, and that there are many solutions to process

mosaiced images. I tested 4 of them and compare them on

3 images. Those 4 methods have produced some results

that can definitely be improved especially on the edges.

We also have to consider that this is a theorical model

because in digital cameras the CCD array is not really in

focus and so each pixel knows a bit about its neighbors.

Thus some other algorithms can do a better interpolation

depending on measurments on the focus of the camera.

References

1. Ramanath et al., “Demosaicking Methods For Bayer

Color Arrays” (2002)

2. Malvar et al., “High Quality Linear Interpolation for

Demosaicing of Bayer-Patterned Color Images” (2004)

