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Abstract

The use of colorimetry within industry has grown extensively in the last few decades. Central to many of

today’s instruments is the work of the CIE system, established in 1931. Many have questioned the validity

of the assumptions made by Wright (1928-29) and Guild (1931), some suggesting that the 1931 color

matching functions are not the best representation of the human visual systems’ cone responses.

A computational analysis was performed to evaluate the 1931 color matching functions against other

responsivity functions using metameric data. The underlying principle is that an optimal set of responsivity

functions will yield minimal color difference errors between pairs of visually matched metamers. The

difference of average color differences found in the six chosen sets of responsivity functions were small.

The CIE 1931 2° color matching functions, on average, provided the largest color difference, 4.56 ∆E*
ab.

With the best performance coming from the CIE 1964 10° color matching functions, yielding an average

color difference of 4.02 ∆E*
ab.

An optimization was then performed on the CIE 1931 color matching functions. The concept was that color

differences between metamers can be used to improve predictions of color matching functions. If one is to

take all pairs, and perform an optimization that globally minimizes the average color difference, then one

can hope to obtain an optimal set of responsivity functions. The optimum solution was to use a weighted

combination of each of the different sets of responsivity functions. The optimized set, the ‘Shaw and

Fairchild’ responsivity functions, were able to reduce the average color difference down to 3.92 ∆E*
ab.

The final part of the work was to build a computer based simulation of the color differences between the

different sets of responsivity functions. This simulation allows a user to load a spectral radiance, or

reflectance, data file and display the tristimulus match predicted by each of the seven sets of responsivity

functions.
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1 INTRODUCTION

The use of colorimetry within industry has grown extensively in last few decades. The

cost of hardware is constantly decreasing, and the ‘quality drive’ pushing companies to

optimize productivity have been strong contributory factors. Although the technology is

only really still in its infancy, many take for granted that instrumental tolerances will

suffice and human interaction can be minimized.

Central to many of today’s instruments is the work of the CIE system (Commission

Internationale de l'Éclairage) established in 1931. The CIE system allows the

specification of color matches for a standard observer using color matching functions.

These color matching functions of normal human observers are the fundamental basis of

colorimetry. Studies performed by Guild (1931) and Wright (1928-29) are central to the

work of the CIE, providing the foundation for the derivation of the CIE 1931 standard

observer. Since the original work of the CIE, the standard has withstood an onslaught of

technical pressures and remained a useful international standard for many years

(Fairchild, 1998).

Stockman and Sharpe (1998), Stockman, MacLeod and Johnson (1993), and others, have

questioned the validity of the assumptions made by Wright (1928-29) and Guild (1931).

Stockman and Sharpe (1998) suggest that the 1931 color matching functions are not the

best representation of the human visual systems’ cone responses. They were constructed

from the relative color matching data of Wright (1928-29) and Guild (1931), with the

assumption that the color matching functions must be a linear combination of the 1924
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CIE V(λ) luminous efficiency function. The implications of the questions are not known,

one could consider that the concern be purely one of theoretical rigor, bearing no

significance in the application of the current technology. Or, should the concern be of

valid cause, one that may affect the whole of colorimetry as it stands to date.

If one is to assume that the CIE 1931 color matching functions are sufficient when they

are not, then much of the work being done to build device models, minimizing

colorimetric error is attempting to attain an impossible goal. If the CIE 1931 color

matching functions are not the ideal solution, would a new set lead to better colorimetry?

Or is the error within the bounds of statistical insignificance?

This question is of great importance to the color science community. Applications that

assume that the CIE 1931 color matching functions are sufficient, if they are not, will

inherently lead to a systematic error throughout all applications of colorimetry.

Existing works clearly document some of the issues that are cause for concern when

using the CIE color matching functions and their impending effects on the color

community. But, although many are quick to comment on their opinions and suggest new

cone fundamentals or color matching functions, little documented work has been done to

actually compare the benefits of using the modified functions and sensitivities.

It is the aim of this work to evaluate the accuracy of the CIE 1931 color matching

functions against more recent estimations and modifications. To determine whether the

new cone fundamentals / color matching function derivations are truly better, or merely

within the bounds of statistical insignificance.

The objective of the work is to undergo a computational analysis with different sets of

color matching functions and cone fundamentals using existing measurements of



Mark Shaw . 3 .

metameric pairs. The computation will determine which set best approximates the

observers’ visual perception.

The foundation upon which the theory of color matching functions are based, and the

different sets of cone fundamentals / color matching functions are summarized to provide

the reader a background to the work.

1.1 Colorimetry

At its birth, it was clear that CIE colorimetry was seen primarily as a means of

identifying and specifying colors, and for defining color standards. Few envisaged

colorimetry and the CIE system as a working tool in the color industries (Wright, 1981).

Following the establishment of the CIE 1924 luminous efficiency function (Vλ), attention

was turned to the development of a system of colorimetry. At that time cone

fundamentals were not available, therefore a system of colorimetry was developed based

on the principles of trichromacy and Grassmann’s laws of additive color mixture

(Fairchild, 1998, Wright, 1981).

The concept of the system is that any color can be matched by an additive mixture of

three primary colors. The primaries are defined as a set of three lights, either real or

imaginary that cannot be matched by any additive combination of the other two.

)()()( ������������ BGRC ++≡ (1.1)

Any color, C, can therefore be represented by a trichromatic equation (Eqn 1.1), where ��������

���������������� are the primaries and R, G, B are the amounts of each primary needed to match a

given color. These amounts are called tristimulus values. The tristimulus values are

extended such that they can be obtained for any given stimulus, defined by a spectral
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power distribution. This extension takes advantage of Grassmann’s laws of additivity and

proportionality to sum tristimulus values for each spectral component of a stimuli

(Fairchild, 1998).

Wyszecki surmises that basic colorimetry is governed by the experimental laws of color

matching valid for all human observers with normal color vision. From these

experimental laws three equations evolve which express the conditions for a color match

between two given color stimuli, shown in Equation 1.2

λλλλλλ

λλλλλλ

λλλλλλ

λλ

λλ

λλ

dzSdzS

dySdyS

dxSdxS

)()()()(

(                       )()()()(

)()()()(

21

21

21

1.2)

∫∫
∫∫
∫∫

=

=

=

Where S1 and S2 are the spectral power distributions of the two color stimuli compared

by the observer, and )( ),( ),( λλλ zyx define the color matching properties of the

observer (Wyszecki, 1973).

1.1.1 CIE 1931 Color Matching Functions

The CIE 1931 standard observer is based on two independent experiments performed by

Guild (1931) and Wright (1928-29) that measured the chromaticity coordinates for a total

of 17 observers. Wright (1928-29) used monochromatic primaries, whereas Guild (1931)

used broadband primaries. Since the primaries from one experiment can be specified in

terms of tristimulus values the other experiment, a linear transformation (3x3 matrix

transform) is possible to change the results from the one set of primaries into the other.

Thus a transformation was derived to convert both Wright’s and Guild’s data into a set of

common ������������ primaries (Fairchild, 1998).
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In order to eliminate the negative values in the color matching functions, the CIE

transformed to a set of imaginary primaries, ������������. The goal of the transformation to

eliminate the negative portions of the color matching functions and to force one of the

color matching functions to equal the CIE 1924 photopic luminous efficiency function,

V(λ). Forcing one of the color matching functions to equal the V(λ) function serves the

purpose to incorporate the CIE system of photometry into the CIE system of colorimetry.

The validity of such decisions are still in much debate to date. Wright (1981) suggests

that no reference can be found to additivity experiments in the papers of Ives (1923) and

Guild (1931) on the transformation of color mixture data, in spite of the fact that the

assumption is fundamental to the legitimacy of such transformations. He writes that

Guild, in his 1926 Survey, states: “Newton’s law of mixtures follows directly from the

geometry of the color triangle. The law is that if any two colours are mixed, the colour

produced lies on the line joining the two constituents on the colour chart and dividing it

inversely as the quantities in the mixture.” Guild was either relying on Newton’s

experiments to justify the principle, or claiming that the geometry of the colour triangle

proved the law (Wright, 1981). Wright then goes on to add that the additivity principle

has been studied since 1931, and found to hold reasonably well for 2° color matching.

Although it has been shown, however, that if light adapted to level above about 10,000 to

15,000 trolands, then color matches break down, implying additivity failure at this level.

In 1951, Judd proposed a revision to the 1931 CIE standard observer, (Judd, 1951)

concluding that the CIE had given weight to early measurements that led to low average

values at short wavelengths. Vos (1978) has further refined Judd’s modification by (i)

making use of more precise computational procedures than that available to Judd in 1951,

(ii) extending the data further into the far red, (iii) reducing by 0.2 log units the values of

Judd’s modified V(λ) function for wavelengths below 410nm, making them follow more
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closely to the values obtained by Stiles (1955), (iv) slightly smoothing the CIE color

matching functions from 380 to 400nm and (v) truncating the color matching functions at

380nm, because the CIE 1931 data below that wavelength are extrapolated (Vos, 1978).

Wright believes that the integrity of the CIE 1924 luminous efficiency function V(λ)

being incorporated into the color matching functions has not proved to be so error free

(Wright, 1981). Stockman and Sharpe (1998) re-iterate this concern, “The CIE functions

were constructed from the relative color matching data of Wright and Guild with the

assumption that the CMFs must be a linear combination of the V(λ) function. Not only is

the validity of the V(λ) curve questionable, even after the corrections of Judd and Vos

have been applied, but so too is the assumption that V(λ) must be a linear combination of

the CMFs.”

1.1.2 Stiles and Burch Color Matching Functions

Twenty years passed between the standardization of the 1931 standard observer and a

new investigation to re-determine the color matching functions, performed by Stiles in

the 1950’s. The investigation was encouraged by the CIE Colorimetry Committee, having

expressed concern for the correctness of the 1931 standard observer data. Specific

concern surrounded (i) the use of the 1924 standard luminous efficiency function V(λ) at

the ends of the spectrum, (ii) discrepancies between perceived and measured color

differences of certain titanium pigments observed and computed from the CIE 1931 data,

and (iii) interest in applicability to color matching in large visual fields used for industrial

production control (Stiles et al., 1955, Wyszecki and Stiles, 1982). Their concerns are

very valid, especially that of (ii), indicating that the standard observer does not work for

the titanium pigments under evaluation.
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Stiles’ investigation began with a pilot study involving a group of 10 observers that made

color matches and heterochromatic brightness matching in 2° and 10° visual bipartite

fields on a specially designed colorimeter, known as the Stiles (or NPL) trichromator.

(Stiles et al., 1955) The report showed that there were experimentally significant

differences between the 2° pilot data and the standard observer, but were not large

enough to warrant a change in the standard data for practical colorimetry. (Wyszecki and

Stiles, 1982).

Although no further work was done by Stiles on 2° color matching, his 2° pilot data

provide a valuable set of color matching functions. Others differ in the opinion of the

CIE, Stockman and Sharpe (1998) prefer either the 2° or 10° data because they were

directly measured and are uncontaminated by changes introduced by standards

committees. (Stockman et al., 1998)

Estevez (1979) performed a study of the data from each of the investigations for the 2°

observer because he felt that the CIE standard observer imposed additional processing to

the experimental data that may have added error to the experimentation performed by

Wright and Guild. He also documents correcting for a calibration error in the original

study, and concludes

“The conclusion one draws from all of these comparisons is straightforward: In no case can a

photometric function be a linear combination of CMFs ... Most important, the CIE V(λ) is

not itself a linear combination of CMFs, and therefore the synthesized CIE CMF must be in

error, especially in the spectral region around 465nm.” (Estevez, 1982)

But, Estevez does also conclude on the basis of his observations that the three studies

(Wright, Stiles and Burch) agree with each other and, therefore represent the same

average normal trichromatic observer.
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1.1.3 Thornton Color Matching Functions

In a series of articles covering over 20 years of research, Thornton discusses his work

‘toward a more accurate and extensible colorimetry.’ (1992abc, 1997, 1998ab) Early

work focussed on determining an observer’s color matching functions using several

disparate sets of primary lights for each observer. The visual colorimeter-spectro-

radiometer utilized bipartite 10° visual fields, natural pupil, dim surround, binocular

viewing, and adaptation to a steady match-point. Both maximum saturation and Maxwell

method visual matches were used, resulting in large tristimulus error when computed

using the 1964 CIE standard observer (Thornton et al., 1998a). Thornton’s tests included

an evaluation of Grassmann’s Additivity Law, resulting in small visual differences

between the summed colors being often seen, but with low consistency among the 3

observers. He concludes that Grassmann’s additivity law holds approximately, since only

small visual mismatches were seen. However, the 1964 Standard Observer showed large

systematic errors, and again showed itself to be non-representative of normal human

observers (Thornton, 1992a). In a later article (Thornton et al., 1998a), he summarizes his

earlier findings, stating that the CIE standard Observers represent human vision no better

at high brightness than at low, and no better with small visual fields than with large.

In his quest to find a more accurate and extensible colorimetry, Thornton published a new

method of extraction of color matching functions (Thornton, 1998b). Thornton’s

justification for the new method was his finding that color matching functions by either

the Maxwell method or by the maximum saturation method lead to large errors

(discrepancies) in computed chromaticities of pairs of visually matching lights. The direct

extraction method utilizes 10 pairs of visually matching lights and 8 observers. Each

observer matches a constant reference white in the bottom field of view by adjusting the

spectral power distribution of a white light mixture in the top field of view.
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Using an iterative approach, a computer program uses a set of arbitrarily chosen color

matching functions to predict the tristimulus values of the reference and visual match.

The total tristimulus error (TTEo) is then calculated between the two sets, for each of the

10 visually matching pairs of lights. The color matching functions are then weighted,

renormalized, and the TTE again computed. The ratio of TTE/TTEo is then added to

successive wavelengths of the weighting function. After each iteration, the correction

function is modified, suggesting an appropriate change to the working color matching

functions in order to reduce the total tristimulus error.

The result is a new function already accredited with almost completely eliminating the

initial large tristimulus error, committed by the beginning CIE function in computing

tristimulus values of highly metameric starting material. Having used the CIE 2°

functions as an initial set, new functions have been extracted, with reductions of total

tristimulus error to 1-2%.

1.2 Cone Spectral Sensitivities

The properties of human color matching are defined by the spectral responsivities of the

three cone types. Thus, if the spectral responsivities of three cone types are known, two

stimuli, denoted by their spectral power distributions Φ1(λ) and Φ2(λ), will match in

color if the product of their spectral power distributions and each of the three cone

responsivities, L(λ), M(λ), and S(λ), integrated over wavelength, are equal. (Fairchild,

1998) This is shown in Equation 1.3.
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It follows therefore from Equations 1.2 and 1.3 that the relationship between colorimetry

and cone spectral sensitivities is very close indeed. Because of the difficulty in measuring

the spectral sensitivity of cones, the need for a colorimetry defined by color matching

predated vision research by several decades. Thus the CIE, in establishing the 1931

standard observer previously mentioned, needed to take a less direct, psychophysical

approach. Since then, scientific techniques have progressed a long way. Cone spectral

sensitivities (a.k.a. cone fundamentals) have been proposed by Vos and Walraven (1971),

Smith and Pokorny (1975), Stockman, MacLeod and Johnson (1993), and Stockman and

Sharpe (1998). Each set of cone fundamentals are briefly discussed.

1.2.1 Vos and Walraven

Vos and Walraven set out to try and determine the spectral response curves of the foveal

receptor system, their work using the underlying assumption that dichromatic vision can

be conceived as a reduced form of normal trichromatic vision. This assumption was not

universally agreed upon, Helmholtz hypothesized that deuteranopia is attributed to a lack

of G receptors, whereas Fick believes that it is due to a fusion of the R and G systems.

(Vos and Walraven, 1970)

Their foundation was that the spectral sensitivities of the foveal receptors (R, G, B) are a

linear transform of the CIE system primaries (X, Y, Z), by an unknown transform, shown

in Equation 1.4.
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Because of the well known limitations of the 1931 CIE standard observer below 460nm,

Judd (1951) proposed a revision, upon which their work was based. The characteristics

upon which the vision model is built, are based on a Helmholtz-type three receptor cone,

converted to a Hering-type antagonistic red-green and yellow-blue color signal.

Figure 1.1 – Schematic representation of the zone model of color vision

A schematic diagram is shown in Figure 1.1. The scheme was developed to account for a

wide variety of color vision phenomena such as color discrimination, the Bezold-Brucke

effect and the Stiles-Crawford hue shift. (Vos and Walraven, 1970)

It was assumed that the luminance contribution Yλ was the sum of the receptor

contributions, thus can be written as in Equation 1.5.
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Equation 1.6 is in terms of relative sensitivity, thus three of the 9 unknowns in Equation

1.4 are known (A12, A22, A32). The other six were derived from dichromatic color

confusion data.

Dichromatic color confusion is a simplified form of trichromacy, building upon the

assumption that the confusion of colors in a color deficient observer occur along straight

convergent lines in a chromaticity diagram. Using tritanopic, deuteranopic and protanopic

color observers, the remaining unknowns in Equation 1.4 can be calculated.

The data on the tritanopic confusion center was re-evaluated by Walraven (1974), his

study leading to a new center. On the basis of his work, Vos (1978) redefined the cone

system fundamentals.
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The final matrix transformation proposed by Vos and Walraven (1971), updated by

Walraven (1974), based on the Judd (1951), Vos (1978) modified X, Y, Z, functions is

shown in Equation 1.7.

1.2.2 Smith and Pokorny

Smith and Pokorny (1971), showed that the spectral sensitivities of protanopes and

deuteranopes are similar in shape on their long wavelength slope to that of isolated visual

pigment absorption spectra. Their extended research analyzed the spectral sensitivity of

protanopes and deuteranopes in the wavelength range 400-520nm. This specific

wavelength range posing a number of problems. Firstly, the 400-520nm region is one

where two photopigments are active, and secondly, the accuracy of the CIE color
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matching functions within that range is questionable. To combat the problems

encountered with the color matching functions, Smith and Pokorny utilized additional

tools. Thirdly, Smith and Pokorny believed that when adjusting the luminosity curves and

their CIE transforms for comparison with pigment absorption curves, the corrections for

the inert ocular pigments become crucial. Fourth, the problems in the short wavelength

region possibly arise from fluorescence within either the optic media, or the receptors

themselves. Such fluorescence could give rise to heightened sensitivity curves, which

would deviate from predicted absorption spectra of the visual pigments. However, they

believe that the effect is confined to wavelength 400-410nm and is probably negligible.

(Smith and Pokorny, 1975)

In light of the problems just mentioned, Smith and Pokorny decided to calculate a set of

receptor characteristics based on a set color confusion (copunctal) points, whilst

restricting the model such that the sum of the R and G functions represent the Y function.

Smith and Pokorny chose the same protanopic and deuteranopic copunctal points as Vos

and Walraven (1971), with a different tritanopic copunctal point.
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The final matrix transformation proposed by Smith and Pokorny, based on the Judd

(1951), Vos (1978) modified X, Y, Z,  functions is shown in Equation 1.8.

Their results suggest that the dichromatic data used and their transformation of the CIE

color matching functions in the wavelength range 430-700nm approximate the visual

pigment absorption coefficient predicted from the iodopsin absorption spectra. Thus



Mark Shaw . 14 .

concluding that the iodopsin spectra can provide a reasonable description of the visual

pigment absorption spectra of the middle and long wavelength sensitive foveal cones.

Later, DeMarco, Smith and Pokorny (1992) published new cone fundamentals derived

from X-chromosome linked anomalous trichromats for the wavelength range of 400-

700nm.

1.2.3 Stockman, MacLeod and Johnson

Using a new technique, transient chromatic adaptation, Stockman et al. measured the

spectral sensitivity of middle-wave sensitive (M-) cones in 11 normal and 2 protanopic

observers, and the long-wave sensitive (L-) cones in 12 normal and 4 deuteranopic

observers.

Smith et al. (1983) evaluated the differences between the CIE 2° CMF’s, the Judd

revision and the Stiles and Burch 2° color matching functions, and concluded that the

different color matching functions are equivalent except for variations in pre-receptoral

absorption’s. Stockman et al., believe that to the extent that Smith et al. analysis is true,

the differences between the Stiles and Burch cone fundamentals and the CIE 2° CMF’s

will disappear if differences in lens and macular pigmentation are allowed for. Therefore,

Stockman et al., based their cone fundamentals on the revised Stiles and Burch (1955)

cone fundamentals due to their consistency with deuteranopic and protanopic spectral

sensitivities, with tritanopic color matching and with their own spectral sensitivity data

measured in color normal observers.

The proposed Stockman et al., cone fundamentals are based on the Stiles and Burch

(1955)   and  , bgr 2° color matching functions, calculated using Equation 1.9.
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Where R, G and B, are the Stiles and Burch 2° color matching functions, L, M and S, are

the foveal receptors. The S-cone sensitivities have been further extended at wavelengths

greater than 525nm using Equation 1.10.
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Because the Stiles and Burch (1955) cone fundamentals are not a linear transform of

Judd’s CIE V(λ) function, an approximation can be made using Equation 1.11.
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1.2.4 Stockman and Sharpe

In extended research, Stockman and Sharpe measured the spectral sensitivities of the

short (S-), middle (M-) and long (L-) wavelength cones in normal trichromats, in

dichromats, and monochromats of known genotype. (Stockman et al., 1998)

As with Vos and Walraven (1971), Smith and Pokorny (1975), and Stockman, MacLeod

and Johnson (1993), the use of monochromatic and dichromatic observers to define

normal cone spectral sensitivities requires that their vision be a reduced form of normal

color vision.

An important aspect of the research is that the M- and L- cone photopigment genes of the

dichromat observers and those of the blue-cone monochromat observers were genetically
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sequenced. The dichromat observers, with the exception of three protanopes, had only a

single M- or L- cone photopigment gene. According to Stockman et al., using single gene

dichromats simplified the interpretation of the spectral sensitivity data. Of the nine

protanopes, three had a single L1M2 gene, three had a single L2M3 gene, one had both

an L1M2 and an M gene, and two had both an L2M3 and an M gene. The spectral

sensitivities of protanopes with a single L1M2 and protanopes with a single L2M3

photopigment gene were practically indistinguishable.

Stockman and Sharpe compared the normal, dichromat and monochromat spectral

sensitivities and tritanopic color matching data with the Smith and Pokorny (1975)

fundamentals and with the Stockman et al. (1993) fundamentals. Their results favor the

Stiles and Burch 2° color matching functions and the CIE 1964 10° color matching

function based L-, M-, and S- cone fundamentals of Stockman, MacLeod and Johnson.

Both sets are consistent with each other and with their dichromat data, but inconsistent

with the blue cone monochromat S-cone spectral sensitivities at long wavelengths.

Using the data derived from their experiments, Stockman et al. (1999) proposed a new

transformation from the Stiles and Burch 10° color matching functions into cone spectral

sensitivities. The matrix transformation is shown in Equation 1.12.
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where   and  , bgr are the Stiles and Burch (1955) 10° color matching functions, and

  and   , sml are the relative foveal receptor sensitivities.
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1.3 Current Research

The aim and objectives of this research were outlined in the introduction. The

computational analysis builds upon the work of Alfvin (1995), Shaw and Montag (1998),

and Shaw and Montag (1999). Alfvin’s work involved a visual experiment designed to

explore observer metamerism by quantifying the precision and accuracy of three sets of

color matching functions, and the magnitude of observer variability found in hard-copy to

CRT matches. The works by Shaw and Montag involved visual experiments in which

observers created metameric matches to a reference stimuli using an additive color

mixture device.

Using the three metameric data sets the accuracy of each of the sets of color matching

functions / cone fundamentals can be evaluated and confidence bounds calculated. Due to

the fact that Alfvin’s data was taken from cross-media matches, the matches are

inherently metameric. The work relies on the assumption that any color match will have

equal cone responses, thus for each set of color matching functions / cone fundamentals,

the optimum match would be 0∆L, 0∆M, 0∆S cone response.

One can also consider that when dealing with metameric matching response data, one can

optimize the existing sensitivity functions to find a set that will optimally predict the

metameric response, given the bounds of observer variance.
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2 RESPONSIVITY FUNCTION SELECTION

To save confusion between the differences of color matching functions and cone

sensitivity functions, in this work both are called responsivity functions. Each of the

different sets of responsivity functions claim to have their benefits over the standard CIE

set. Some are merely a linear transformation of that derived by the CIE into cone space to

better predict the cone responses, whilst others include modifications derived by the

authors. This chapter documents the sets of color matching functions and cone

responsivities chosen for this work, and provides reasoning for the rejected sets.

2.1 Selected Sets

A total of six sets were chosen to evaluate the accuracy of the CIE 1931 color matching

functions, including the CIE 1931; CIE 1964; Stiles and Burch; Demarco, Smith and

Pokorny; Stockman, MacLeod and Johnson; and Vos and Walraven. A tabulated set of the

chosen responsivity functions can be found in Appendix 7, the most up to date sets can be

found on the internet at the Color and Vision Research Laboratory home page :

http://www-cvrl.ucsd.edu/ .

2.1.1 CIE 1931 Color Matching Functions

This set has been included by default, the responsivity curves are shown in Figure 2.1.

http://www-cvrl.ucsd.edu/
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Figure 2.1 : Spectral responsivity of the CIE 1931 color matching functions

2.1.2 CIE 1964 Color Matching Functions

The CIE 1964 color matching functions have been included in order to evaluate the use

of the 10° functions instead of the standard 2° functions. Technically the 1964 functions

should only be used when viewing a stimuli that subtends a visual angle of greater than

4° on the retina. By including the 10° functions in the analysis, with the experimental

setup being for a 2° observation, one can determine if the 1964 functions provide an

overall improvement over the CIE 1931 set, although the application is not considered

correct. The responsivity functions are shown in Figure 2.2.
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Figure 2.2 : Spectral responsivity of the CIE 1964 color matching functions
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2.1.3 Stiles and Burch Color Matching Functions

Some have considered the ‘pilot data’ proposed by Stiles and Burch (1955), to be the

most accurate set of color matching functions available to date. The study involved a

group of 10 observers making color matches and hetero-chromatic brightness matches in

2° and 10° bipartite fields. The final decision of the CIE committee was that the

differences between the pilot data and the CIE standard observer were not large enough

to warrant a change. With this in mind, the inclusion of this set provides an interesting

benchmark for the accuracy of other sets of responsivity function. The Stiles and Burch

responsivity functions are shown in Figure 2.3.
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Figure 2.3 : Spectral responsivity of the Stiles and Burch color matching functions

2.1.4 Demarco, Smith and Pokorny Cone Fundamentals

The work by Demarco, Smith and Pokorny (1992), proposes a set of cone fundamentals

for X-chromasome-linked anomalous trichromats. The work used the cone fundamentals

proposed by Smith and Pokorny (1975) to provide an initial estimate of the normal L and

M cone responsivities for an observer whose color matches are those of the Judd

observer. The spectral responsivity functions are shown in figure 2.4
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Figure 2.4 : Spectral responsivity of the Demarco, Smith and

Pokorny cone fundamentals

2.1.5 Stockman, MacLeod and Johnson Cone Fundamentals

The responsivity functions proposed by Stockman, MacLeod and Johnson (1993) used a

new technique to measure the spectral responsivity of middle-wave sensitive, and long-

wave sensitive cones in observers. The cone absorption spectra are based on the Stiles

and Burch data, but the S-cone responsivities are modified in the long wavelength region.

The spectral responsivity functions are shown in Figure 2.5.
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Figure 2.5 : Spectral responsivity of the Stockman, MacLeod and

Johnson cone fundamentals
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2.1.6 Vos and Walraven Cone Fundamentals

The work of Vos and Walraven (1970) used the assumption that dichromatic color vision

can be conceived as a reduced form of trichromatic vision. Their foundation being that

the spectral responsitivities of the foveal receptors are a linear transform of the CIE

primaries. The original work by was re-evaluated again by Walraven (1974) and Vos

(1978) based on the Judd (1951), Vos (1978) modified color matching functions. They

are not therefore a linear transformation of the CIE 1931 color matching functions. The

spectral responsivity functions are shown in Figure 2.6.
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Figure 2.6 : Spectral responsivity of Vos and Walraven cone fundamentals

2.2 Rejected Responsivity Functions

Not all of the responsivity functions were used in the analysis. A selection of different

sets of color matching functions were analyzed, those being a linear transformation of

another set were automatically discounted.



Mark Shaw . 23 .

CIE 1931 Color Matching
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Figure 2.7 : The foundation of various sets of cone fundamentals

Figure 2.7 shows the different sets of color matching functions considered for the

computational analysis. The Thornton (1998) set was not included in the analysis since it

is still under revision by the author.

The Stockman and Sharpe (1998), and Vos, Estevez and Walraven (1990) sets were not

considered because they are a linear transformation of the Stiles and Burch (1955) set.

The Stockman, MacLeod and Johnson (1993) set was included due to the s-cone

modifications made to the Stiles and Burch (1955) data at wavelengths greater than

525nm.

The Stockman, MacLeod and Johnson (1993) modifications were not included because

they are a linear transformation of the CIE 1964 10° color matching functions.
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3 EXPERIMENTAL DATA SOURCES

This work utilized experimental data from previous visual experiments by Alfvin (1995),

Shaw and Montag (1998), and Shaw and Montag (1999). This chapter discusses the

experimental setup and data collection procedures of the three experiments.

3.1 Experiment 1 – Alfvin and Fairchild (1995)

Alfvin and Fairchild (1995) designed a visual experiment to permit observers to make

critical color matches between prints or transparencies and a CRT display. Seven color

prints, and seven color transparencies were prepared as fixed matching stimuli. The seven

colors included red, green, blue, gray, cyan, magenta, and yellow. The color print samples

were designed in Adobe PhotoShop (v2.5) and imaged with a Fujix Pictrography 3000

color printer. The color transparencies were imaged using an MGI Solitaire 8xp film

recorder using 4x5 Ektachrome 100 Plus Professional film. The chromaticities of the

fixed hard-copy samples illuminated with a fluorescent D50 simulator were designed to

effectively sample the color gamut of the Sony Trinitron CRT display, model PVM-

1942Q used to generate the soft-copy color matches (Alfvin, 1995).

With the use of a simple optical setup, consisting of an equilateral glass prism mounted

on an optical bench, the observers were able to simultaneously view both the soft and

hard-copy matching stimuli. The experimental setup is shown in Figure 3.1.
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Figure 3.1 : Schematic overhead view of Alfvin experimental

setup used for color matching

Both the CRT Display and combination light-booth / light box were aligned with the

optical prism and shielded from the observer. The fixed hard copy stimulus and the

adjustable soft-copy stimulus were presented in a vertical symmetric bipartite field. The

color matching stimuli were presented as solid colors appearing self-luminous in a

darkened room. A neutral translucent diffusion material placed in front of the CRT

display eliminated the appearance of any visual texture in the soft copy stimulus,

rendering the soft-copy stimulus identical to the hard-copy stimuli in terms of spatial

characteristics (Alfvin, 1995).

Observers were seated at a distance of approximately 1 meter from the matching stimuli.

The 5x5 cm matching field subtending a visual angle of 2.9°. The observers were asked

to adjust the color appearance of the soft-copy stimulus to create an exact match for each

of the fourteen different hardcopy stimuli (Alfvin, 1995).
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In order to minimize any potential effects associated with observer fatigue resulting from

extended duration of the experimental tasks, the experiment was divided into two

separate sessions. Each session lasting approximately 45-60 minutes (Alfvin, 1995).

After a match was attained, a PhotoResearch PR-650 telespectroradiometer incorporating

a half-height triangular bandpass of 4nm, recorded the spectral radiance at 4nm

wavelength intervals across the visible spectrum between 380 and 780 nm.

Figure 3.2 shows an example of the different spectral power distributions required to

produce a metameric match between the transparency sample and the CRT display.
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Figure 3.2 : The spectral power distributions of a gray transparency and a CRT display

adjusted to yield a metameric match for an observer.

3.2 Experiments 2 – Shaw and Montag (1998)

Shaw and Montag (1998) designed a visual experiment to allow observers to perform

color match between a gray card of Munsell N5 and an ACS VCS 10 additive mixing

device.
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The ACS VCS 10 consisted of 7 colored discs, all rotating at high speed to simulate an

additive integral visual response. The proportions of each colored disc could then be

adjusted by an observer using the controls to simulate a color. The viewing booth had

fluorescent daylight and incandescent illumination to view the colors. Figure 3.3 shows

the ACS VCS 10 with the front fascia panel removed displaying all 7 colored discs.

Figure 3.3 : ACS VCS 10 additive mixture device

The seven discs in the ACS VCS 10 were White, Red, Green, Blue, Yellow, purple and

Black. Independent control was allowed of any 3 primaries at any one time by the user

control panel. The goal being to generate a metameric match between the Munsell N5

paper and the three primaries.

Of the 5 colored primary discs, two sets of 3 Primaries were chosen – Red, Green, Blue

(RGB) and Blue, Yellow, Purple (BYP). Figure 3.4 shows the ACS VCS 10 in use.

Observers participated in the color matching experiment to assess inter- and intra-

observer variability. All observers claimed to be color normal, but this was not tested.

Each observer performed the color matching experiment 10 times in succession for each

primary triplet. The matching field was 8cm by 9cm, subtending a visual angle of 7°.
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Figure 3.4 : ACS VCS 10 in use. Colored primary disc contributions were controlled by

the user control panel. Metameric match spectra are taken using PhotoResearch

PR650 mounted by observers right shoulder.

Observers were seated 30 inches from the stimuli and asked to make an exact color match

to the Munsell N5 gray card using only the three primaries specified. When a color match

had been achieved, the PhotoResearch PR650 was used to measure the spectral radiance

of the metamer from the observers angle of view. This was considered very important due

to the angular properties of the colored discs, whereby a color match was perceived a

different color when viewed from a different viewing angle. Each observer was asked to

repeat the experiment 10 times for each primary set.

The precision and accuracy of the PhotoResearch was not tested. A previous evaluation

performed by Alfvin (1995) indicated that the systematic and random error associated

with the instrument were minimal and acceptable for the purpose of their research.

Figure 3.5 shows an example of the different spectral power distributions required to

produce a metameric match between the Munsell N5 sample and the ACS VCS 10

additive color mixture device.
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Figure 3.5 : The spectral power distribution of the Munsell N5 patch and ACS VCS

adjusted to yield a metameric match under daylight fluorescent illumination.

3.3 Experiment 3 – Shaw and Montag (1999)

Using an identical experimental setup to that of Shaw et al. (1998), Shaw et al. (1999)

repeated the visual experiment using a different stimuli, and different primary sets.

The stimuli was a neutral gray of L*=50, created with a Fujix Pictrography 3000 color

printer. The Fujix printer is a hybrid photographic / thermal-transfer continuous-tone

digital printer.

The primary sets chosen were Red, Green, Blue (RGB) and Green, Yellow, Purple

(GYP).

Figure 3.6 shows an example of the different spectral power distributions required to

produce a metameric match between the Fujix sample and the ACS VCS 10 additive

color mixture device.
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Figure 3.6 : The spectral power distribution of the Fujix patch and ACS VCS adjusted to

yield a metameric match under daylight fluorescent illumination.

3.4 Experimental Discussion

The three experimental data sets combined comprise of a total of 468 metameric pairs,

matched by observers. All the data was collected at 4 nm wavelength intervals using a

PhotoResearch PR-650 telespectroradiometer.

Observers in the Alfvin experiment made a match with a 2.9° visual field, whereas the

observers for Shaw and Montag (1998, 1999) made a match with a 7° visual field.
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4 COMPARING THE ACCURACY OF VARIOUS DATA SETS

One of the key underlying assumptions of this work is that an optimum set of color

matching functions / cone fundamentals, will predict that the integrated cone responses of

a metameric pair are equal. This is illustrated in Figure 4.1, thus yielding a minimum

color difference in a color space like CIELAB.
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Figure 4.1 : Conceptually ideal set of color matching functions resulting in equal integral

response of the cones
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One can therefore evaluate the performance of a set of color matching functions using

metameric data, by calculating the color difference over all the metameric pairs in that

color space.

A problem arises when one wishes to compare the performance of different sets of color

matching functions / cone fundamentals. It is not sufficient to assume that one can use the

CIELAB color space as the comparative space by just transforming the tristimulus values

of each set of color matching functions into CIELAB co-ordinates using the standard

equations. One must find a common color space in which each set can be compared.

4.1 Rotation to near CIE space

The problem of disparate cone functions was overcome by assuming the common color

space to be CIELAB, using the CIE 1931 standard observer. In order to evaluate the other

sets of functions accurately, a linear transformation was made to rotate each set into an

approximate CIE representation, shown in Equation 4.1.
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A 3x3 rotation matrix was calculated for each set of color matching functions using least

squares. The rotated color matching functions / cone fundamentals, were then used to

calculate the ‘pseudo CIE’ tristimulus values for each set of functions.

By rotating each set into its CIE representation, it enables one to use the standard quality

metrics, including CIE ∆Eab, and CIE ∆E94 in a color space that is commonly used for

performance evaluation.
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It is important to note that the transformation is a linear rotation of the cone

fundamentals. Differences will still exist between the various sets of functions and the

CIE 1931 set after rotation, it must be understood that a direct linear transformation

between any of the sets and the CIE 1931 fundamentals is not wanted. Linear transforms

of the CIE set were discarded in chapter 2.

The rotation of the Stiles set of color matching functions is demonstrated in Figure 4.2.

The upper diagrams showing the original, un-rotated functions, the 3x3 rotation matrix,

and the rotated Stiles and Burch functions overlaid on to of the CIE 1931 color matching

functions.
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Figure 4.2 : Rotation of the Stiles and Burch Color Matching Functions

into a near CIE representation
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Transform Walraven and Vos : (4.6)                TransformJohnson  and MacLeod Stockman, : (4.5)  
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The rotation matrices for the five sets of weighting functions are shown in Equations 4.2-

4.6. These rotations are then applied to the weighting functions and then plotted against

the CIE 1931 standard observer, shown in figures 4.3-4.6.
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Figure 4.3 : Rotated CIE 1964 Color Matching Functions (solid line) plotted over

CIE 1931 Color Matching Functions (marked line)
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Figure 4.4 : Rotated Demarco, Smith, and Pokorny cone Fundamentals (solid line)

plotted over CIE Color Matching Functions (marked line)
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Figure 4.5 : Rotated Stockman, MacLeod, and Johnson cone Fundamentals (solid line)

plotted over CIE Color Matching Functions (marked line)
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Figure 4.6 : Rotated Vos and Walraven cone Fundamentals (solid line) plotted over

CIE Color Matching Functions (marked line)

It can be seen from Figures 4.2-4.6 that the different cone fundamentals differ mainly in

shape below 500 nm, the main affect applying to the z ’  function. The rotated functions

nearly all show a shift in peak sensitivity in the blue region, and also a shift in the low

wavelength region of the x ’ function. In most cases the y ’  function has remained

unchanged.

This indication is in line with the thoughts of the vision community, that the CIE z

function inadequately describes the visual systems sensitivity to the blue end of the

spectrum.

4.2 Tristimulus Calculation

Absolute tristimulus integration was used to calculate the tristimulus values for each of

the metamer pairs from the spectral data. The 4 nm wavelength increment spectral data

was linearly interpolated up to a 5 nm wavelength increment, and the wavelength range
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cropped to 400-700 nm. The wavelength increment was chosen to correspond with that of

the various sets of color matching functions / cone fundamentals, the wavelength range

determined by the source of cone function data.

4.3 CIELAB Representation

Reference white tristimulus values for the measured radiance data were unknown.

Therefore, since the gray patch in each data set had an L* of approximately 50, the

reference white can be approximated using the tristimulus values of the reflectance

spectra scaled by 5. CIELAB coordinates were calculated according to standard CIE

methods (1986), using each of the rotated sets of color matching functions. CIE ∆L*, ∆a*,

∆b*, ∆C*, ∆H* values were calculated for each metameric pair. Color difference values

were calculated using both CIE ∆Eab and CIE ∆E94.

Figures 4.7-4.9 show the positions of the metameric pairs in CIELAB space.

Figure 4.7 : CIELAB a* b* plot of all three combined data sets
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Figure 4.8 : CIELAB L* a* plot of all three combined data sets

Figure 4.9 : CIELAB L* b* plot of all three combined data sets
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4.4 Observer Variability

When considering metameric data from multiple observers, one must also consider the

implications of observer variability. Inter observer variations occur through differences in

observer macular pigment, lens absorptions, and other pre-receptoral features. Readers

interested in understanding further the effects of inter- and intra-observer variability are

advised to look to the work of North (1991), and Alfvin (1995).

For the purposes of this work it is assumed that inter- observer variability is inherent

within the data. The variance can be considered a gain parameter that is present within

the color difference results, the best set of weighting functions minimizing the color

difference as possible. It is therefore important that one understands that the expectation

of this work is not that an optimal set of color matching functions will yield 0∆Eab over

all samples, but that it will yield the lowest mean color difference.

4.5 Statistical Analysis

4.5.1 Students t-test

In order to performance each set of weighting functions, two tailed t-tests were used. The

t-test was used to compare the mean color difference vector (∆L*, ∆a*, or ∆b*) against a

mean of zero. An ideal set of color matching functions would yield a mean ∆L*, ∆a*, ∆b*

of zero, plus an offset for observer variance. The tests were run given the following

hypothesis;

H0 : µ = 0.0 α = 0.05

H1 : µ ≠ 0.0
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First, the color difference between each metamer pair, ∆L*, ∆a*, ∆b* were calculated for

each set of weighting functions. The test statistic was then calculated for each difference

vector, using Eqn 4.7.

(4.7)                      0
2
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where 2T  is the test statistic, X  is  the mean vector difference, 0µ  is equal to zero (test to

see if mean is significantly different from zero), s  is the sample standard deviation, and

n  is the number of samples.

If a set of weighting functions introduce systematic error to the CIELAB values, then the

results of the t-test should indicate that fact. A random distribution of error is desirable.

4.5.2 Multivariate 95% Confidence Ellipse

A sample covariance matrix, SLab, defined by the sample covariances and variances of

∆L*, ∆a*, and ∆b* values, as shown in equation 4.8, was calculated for each set of

weighting functions.
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Assuming a multivariate normal distribution, the inverse of the sample covariance matrix

SLab can be used to construct a 95% confidence region for the sample distribution of the

CIE ∆L*, ∆a*, and ∆b* multivariate data set. (Alfvin, 1995)
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The p-dimensional confidence region for a sample distribution with probability (1-α) is

represented by the quadratic distance function, shown in matrix form in Equations 4.9-

4.11.

( ) ( ) ( )[ ]
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where p is the number of variables, n is the number of observations, α is the Type I alpha

risk associated with a 100(1-α)% confidence region, F is the value of the F distribution

for p, and n-p degrees of freedom with an alpha risk of α. An example of a ∆a*∆b*

bivariate ellipse bound by a 95% confidence region for the sample distribution defined by

Equation 4.9 is shown in Figure 4.10, relative to the CIE 2° Standard Observer.

Figure 4.10 : 95% and mean confidence ellipses for combined data set
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A p-dimensional confidence region for the mean of a sample distribution with probability

(1-α) can also be described with Equation 4.9, by modifying the Q term :

( )
( ) ( ) (4.12)                                  

11
,,Mean Sample αpnpF

pn

np

n
Q −−

−





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As shown in Equation 4.12, the Q term for the sample mean is a function of the

reciprocal of sample size; as n increases, the magnitude of the Q term decreases. Thus,

the uncertainty with which the mean is known decreases with increasing numbers of

observations. (Alfvin, 1995) The mean ellipse can also be seen in Figure 4.10.

In addition to the ∆a*-∆b* relationship shown in figure 4.10, one must also consider the

∆L*-∆a*, and ∆L*-∆b* planes because the experimental color matches involved

adjustments to each of the three independent variables defining the CIELAB color space.

If any one of the three confidence regions defining the sample means of the ∆a*-∆b*,

∆L*-∆a*, or ∆L*-∆b planes do not contain the theoretical mean match for a given standard

observer, the mean color matches are considered to be statistically significantly different.

(Alfvin, 1995)

The results of the statistical tests documented in this chapter are discussed in Chapter 5,

‘Computational Analysis Results and Discussion’.
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5 COMPUTATIONAL ANALYSIS RESULTS

AND DISCUSSION

The computations discussed in Chapter 4 were performed on each of the data sets

individually, as well as all three data sets combined. The results of each data set are

discussed in this chapter. As well as the final six sets of responsivity functions chosen,

discussed in Chapter 2, the Shaw and Fairchild set derived in Chapter 6 have been

included in the results for ease of comparison. The numerical results and confidence

ellipse plots for each data set can be found in Appendices 1-5.

5.1 Alfvin Data Set

As discussed in Chapter 3, the Alfvin experiment was designed to permit observers to

make critical color matches between color prints or transparencies and a CRT display.

Seven color prints and seven color transparencies were chosen by Alfvin as fixed

matching stimuli, the seven colors, red, green, blue, gray, cyan, magenta, and yellow

were chosen. In order to evaluate how the region of color space also varies with the

different set of responsivity functions, the computation was performed on a color center

basis also.

5.1.1 Combined Alfvin Data Set

The total Alfvin data set, containing all 7 color centers is comprised of 268 metamer

pairs.
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The combined evaluation utilizes all metamer pairs to determine the performance of each

set of responsivity functions. The complete tables of results can be found in Appendix 2,

‘Prediction of Metamer Pair – Alfvin Data’.

The results show that little difference can be found between the different sets of

responsivity functions for the Alfvin Data. The CIE 1931 functions yield an average color

difference of 4.39 ∆E*
ab, 2.72 ∆E94, with the best set of responsivity functions being that

of Demarco, Smith and Pokorny, yielding an average color difference of 4.33 ∆E*
ab,

2.67 ∆E94. A summary of the results in Appendix 2 can be found in table 5.1.

4.39 4.88 4.37 4.33 4.38 4.33 4.56

2.72 3.01 2.72 2.67 2.70 2.67 2.81

∆E*ab

∆E*94

Color Difference CIE 1931 CIE 1964 Stiles Demarco Stockman Vos Shaw

Table 5.1 : Average results of computational analysis for all color centers

and observers in the Alfvin data set.

The Shaw and Fairchild responsivity functions derived by the optimization in Chapter 6

yield an interesting result, the average color difference is the second highest.  This

indicates that the contribution of the Alfvin data set to the optimization may have been

less significant than the other data sets, with the optimization minimum being found even

though an increase in the Alfvin data set occurred.

The statistical tests performed on the data show some interesting features and can be

found in Appendix 2. A two tailed t-test for means was applied on each of the ∆L*, ∆a*,

∆b* values. The null hypothesis being that the means are equal to zero. One can see that

the CIE 1931 functions fail the test in both the ∆a* and ∆b* planes, indicating that there

are systematic deviations from a mean of zero. This implies that the functions are not

optimum. If one then looks at the Shaw and Fairchild results, it is found that the null
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hypothesis is ‘failed to be rejected’ in all three dimensions, indicating that the mean

cannot be shown to deviate from zero. The Shaw and Fairchild confidence ellipse plots in

Figure 5.1, and the whole set of plots in Appendix 2, show the 95% confidence ellipse

and mean confidence ellipse for each of the responsivity functions. It is clearly evident

that the mean ellipse is far smaller than the variation of the data, in all cases.

Figure 5.1 : Confidence ellipse plots of the Shaw and Fairchild

responsivity functions, using the whole alfvin data set.

95% Confidence region - Outer ellipse, Mean – Inner ellipse
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The shapes of the ellipses can be seen to vary from plot to plot, but the change is usually

only slight and of little significance.

5.1.2 Segmented Alfvin Data Set

The segmented analysis was done both by color center and by media type, yielding 14

separate analyses. Table 5.2 summarizes the average color difference results (∆E*
ab) for

each separate analysis.

Print 3.69 3.65 3.28 3.38 3.28 3.38 3.31

Trans. 3.08 4.20 3.24 3.03 3.25 3.03 3.49

Print 3.62 4.13 3.54 3.34 3.54 3.34 3.44

Trans. 3.32 5.95 3.88 3.33 3.88 3.32 4.65

Print 4.06 4.43 3.92 4.04 3.91 4.05 4.54

Trans. 4.42 4.42 4.32 4.43 4.32 4.43 4.31

Print 5.78 7.18 5.69 5.75 5.69 5.76 6.34

Trans. 4.61 4.77 4.44 4.61 4.44 4.61 4.41

Print 3.63 3.54 3.52 3.57 3.52 3.57 3.51

Trans. 4.61 4.87 4.75 4.60 4.76 4.60 4.78

Print 4.43 4.39 4.36 4.34 4.36 4.34 4.38

Trans. 4.43 5.13 4.60 4.20 4.60 4.20 4.62

Print 4.92 4.76 4.63 4.65 4.63 4.65 4.89

Trans. 6.14 6.08 6.09 6.37 6.09 6.38 6.17

4.34 4.82 4.30 4.26 4.31 4.26 4.49

ShawVos StockmanDemarcoStilesCIE 1964

Yellow

Red

CIE 1931

Gray

Mean of Means

Green

Blue

Color Center

Cyan

Magenta

Table 5.2 : Mean color difference (∆E*
ab) results of computational analysis using the

segmented Alfvin data set. Mean of means is the mean color difference of the averaged

results for each color center, giving an indication to the overall performance of each set

of responsivity functions.

It can be seen that some color centers yielded higher average color difference results than

others, the blue transparency and yellow print being good examples.

That said, the majority of mean color differences tended to vary around 3-4 ∆E*
ab. This

indicates that observer variance exists, irrespective of color center. The overall

performance (Mean of means) of each set of responsivity functions are shown in Table
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5.2, it is evident that the CIE 1931 color difference is lower than the Shaw and Fairchild

color difference for this data set. This again confirms the suspicion that the optimization

minimization was not necessarily the Alfvin minimum.

5.2 Lab ’98 and ’99 Data Sets

The results and confidence ellipse plots of the Lab ’98 data can be found in Appendix 3,

that of the Lab ’99 data in Appendix 4. Both sets of results exhibit interesting trends that

can be seen in Tables 5.3 and 5.4.

3.80 2.03 2.90 3.39 2.90 3.38 2.08

3.49 1.85 2.57 3.11 2.57 3.11 1.86

∆E*ab

∆E*94

Color Difference CIE 1931 CIE 1964 Stiles Demarco Stockman Vos Shaw

Table 5.3 : Average results of computational analysis for the Lab ’98 data set.

4.53 3.07 3.86 4.36 3.86 4.36 3.42

4.16 2.79 3.50 4.01 3.50 4.01 3.12

Shaw

∆E*ab

∆E*94

Color Difference CIE 1931 CIE 1964 Stiles Demarco Stockman Vos 

Table 5.4 : Average results of computational analysis for the Lab ’99 data set.

The average color difference for both data sets is lower when calculated using the CIE

1964 10° functions, and the Shaw and Fairchild functions. This is interesting to note,

since the general trend in the Alfvin data set was an increased color difference for both

the CIE 1964 and Shaw functions. Also, the performance improvement is quite

substantial, in both cases.

Although the CIE 1964 functions provide the lowest average color difference, the

tabulated results in Appendices 3 and 4 show systematic deviations from a mean of zero

in at least two of the three dimensions. This indicates that although the average color
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difference is low, it is offset from a mean of zero. This is not surprising when one looks at

the confidence ellipse plots of some of the responsivity functions, shown in Figure 5.2, it

is clear that two distinct clouds exist. One possible reason can be linked to the two

primary sets used to match the reference color. The Shaw and Fairchild set, exhibit

systematic deviations in two of the three dimensions. The same possible explanation

exists.

Figure 5.2  Confidence ellipse plots of the Lab 98 data set, using the CIE 1931 standard

observer. The two ‘clouds’ of data points are thought to represent the color matches

attained by the different primary sets used.

5.3 All Three Data Sets Combined

The results and confidence ellipse plots of the three data sets combined can be found in

Appendix 1. The results have been summarized below in Table 5.5.

4.56 4.02 4.14 4.36 4.14 4.37 3.92

3.41 2.82 3.01 3.24 3.00 3.24 2.78

Shaw

∆E*ab

∆E*94

Color Difference CIE 1931 CIE 1964 Stiles Demarco Stockman Vos 

Table 5.5 : Average results for the computational analysis of all three data sets combined
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It can be seen from Table 5.5 that the Shaw and Fairchild responsivity functions yield the

lowest color difference, averaged over all of the samples in the combined data set. But, it

is clear that the difference between each of the sets is only slight, ranging from 4.56 ∆E*
ab

at worst, to 3.92 ∆E*
ab at best.

Figure 5.3 : 95% and mean confidence ellipses of Shaw and Fairchild responsivity

functions, using all three combined data sets
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When looking at the statistical results, it is clear that no one set of responsivity functions

performs optimally in all three dimensions. There is always at least one dimension in

which it is possible to reject the null hypothesis.

Although the statistics tend toward the decision that the means are significantly different

from zero, it is important also to consider that the ∆L*, ∆a*, ∆b* means are not far off

zero, in all cases. The discrepancy is due to the fact that the data set consists of 468

metamer pairs, creating a very small mean ellipse.

The Shaw and Fairchild confidence ellipse plot for the combined data sets are shown in

Figure 5.3. The mean ellipse can be seen in the confidence ellipse plots of Figure 5.3 and

Appendix 1, the mean confidence ellipse being very small in comparison with the outer

ellipse.

5.4 Thornton Metameric Pair

As discussed in chapter 1, the recent works of Thornton (1992abc, 1997, 1998ab) have

focussed on determining an observer’s color matching functions using several sets of

primary lights for each observer. Using one of Thornton’s data points, shown in Figure

5.4, a pair of spectral power distributions that stress the deficiency of the standard

observer, the performance of each set of weighting functions was ascertained. The two

stimuli visually matched to eight color normal observers.

5.35 9.75 6.75 4.84 6.74 4.83 7.96

3.50 6.23 4.32 3.03 4.31 3.02 4.94

∆E*ab

∆E*94

Color Difference CIE 1931 CIE 1964 Stiles Demarco Stockman Vos Shaw

Table 5.6 : Results for the computational analysis using the

Thornton metamer pair
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Figure 5.4 : Thornton’s metameric pair

Table 5.6 shows the results of the computational analysis, it can be seen that the CIE

1964, and Shaw and Fairchild responsivity functions performed worst. Surprisingly the

results point towards the Demarco, et al. and Vos and Walraven responsivity functions as

being the best. It is important to note though that the Thornton data set only consisted of

one metameric pair that was considered equivalent by eight observers. A much more

rigorous data set is needed to make any conclusive decisions. The Thornton data does

however agree with the Alfvin and Fairchild range of observer variability.

5.5 Derivation of Optimized Responsivity Functions

The derivation of an optimized set of responsivity functions is discussed later in Chapter

6. The results discussed above have shown that the optimized weighting function

performs very well on the Lab ’98 and Lab ’99 data sets, but not so well on the Alfvin

data set. This is surprising, since the Alfvin data set comprises over half the samples in

the combined data set on which the optimization was performed. It is also evident that the

Shaw and Fairchild responsivity functions exhibit similarities to the CIE 1964 10° color

matching functions, producing similar results in all three data sets. One could

conceivably improve the performance of the Shaw and Fairchild responsivity functions

on the Alfvin data by weighting the importance of the Alfvin data set.
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6 DERIVING AN OPTIMIZED SET OF

RESPONSIVITY FUNCTIONS

It is possible to consider that an optimal set of responsivity functions can be derived from

visual color matching data by a modification of an existing set of responsivity functions

using the visual data to weight the adjustments. Using the three combined metameric data

sets, one can derive an optimized set by weighting the minimization function with the

color difference of the metameric pairs for multiple observers. Thus optimizing the

relative weights by minimizing the average color difference over all observations.

6.1  Techniques Used

A variety of approaches have been taken to finding the optimal set of responsivity

functions that best describes the data. The results of each of the techniques listed below

are summarized in further detail, with possible reasoning as to why each technique

obtained the results they did.

.i. Unconstrained Non-linear optimization, delta XYZ function

.ii. Constrained Non-linear optimization, delta XYZ function

.iii. Constrained Non-linear optimization, using 18 cubic spline functions,

delta XYZ function

.iv. Constrained Non-linear optimization, baseline 0, using 18 cubic spline

functions, delta XYZ functions
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.v. Constrained Non-linear optimization, baseline 0, using 18 cubic spline

functions, direct XYZ functions

.vi. Constrained Non-linear optimization, using 4 cubic spline functions,

delta XYZ function

.vii. Linear Regression, using 18 cubic spline functions, delta XYZ function

.viii. Linear Regression, using Principal Component Analysis basis vectors,

delta XYZ function

.ix. Linear Regression – I, using Sine and Cosine basis vectors, delta XYZ

function

.x. Linear Regression – II, using Sine and Cosine basis vectors, delta XYZ

function

.xi. Constrained Non-linear optimization, using multiple color matching

functions, direct XYZ functions

.xii. Constrained Non-linear optimization, using CIE Standard Deviate

Observer functions, delta XYZ functions

.xiii. Monte Carlo Method, using Sine and Cosine basis vectors, delta XYZ

function

All analyses were performed using all 468 metamer pairs, combining 3 data sets – Alfvin

(1995), Shaw and Montag (1998), and Shaw and Montag (1999).



 Mark Shaw . 54 .

6.1.1 Unconstrained Non-linear optimization, delta XYZ function

This optimization approach uses an in-built IDLTM non-linear minimization routine called

Powell, using the Powell method. The optimization routine does not allow for constraints

on any of the parameters. The cost function is shown in Equation 6.1.

( )
)1.6(

XX
min Arg        

2
2,i,1

                       
n

x        xxx i
iiioptimumi

−
=∆→∆+=

For the purposes of the optimization, each of the three individual responsivity functions

shall be referred to as weighing functions. Where ix  is the ith weighting function under

evaluation, (x , y , or z ). Xi,1 is the tristimulus value of the reference for the ith weighting

function, Xi,2 is the tristimulus value of the visual match (sample) for the ith weighing

function, and n is the number of observations. Arg min is the argument of ix∆  that

minimizes the RMS error between the reference and sample tristimulus values.

The routine iterates to find the best fit delta function (ix∆ ) for x , y  and z  to minimize

RMS(x ) , RMS(y ) and RMS(z ) respectively. Freedom was given to all 61 wavelengths,

thus allowing each wavelength to be individually optimized for each weighing function.

The optimized, average color difference obtained by this minimization method is

2.468∆E*
ab. It can be seen from Figure 6.1 that although the average color difference

predicted was very low, the weighting functions are highly jagged and unsuitable as a set

of weighting functions.
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Figure 6.1 : Optimized weighting functions using the Powell method without constraint.

In each case the black line represents the CIE 1931 weighting function, the colored line

the optimized function.

6.1.2 Constrained Non-linear optimization, delta XYZ function

This technique uses the same optimization method as discussed in section 6.1.1, but this

time an artificial constraint is built into the cost function that limits the magnitude of the

delta function. The delta function is constrained to ± 0.4, shown in Equation 6.2.

( )

4.04.0  

)2.6(
XX

min Arg        
2

2,i,1
 

≤∆≥−

−
=∆→∆+=

i

i
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n

x        xxx
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Where ix  is the ith weighting function under evaluation, (x , y , or z ). Xi,1 is the

tristimulus value of the reference for the ith weighting function, Xi,2 is the tristimulus

value of the visual match (sample) for the ith weighing function, and n is the number of

observations. Arg min is the argument of ix∆  that minimizes the RMS error between the

reference and sample tristimulus values.

Figure 6.2 : Optimized weighting functions using the Powell method with constraint. In

each case the black line represents the CIE standard weighting function, the colored line

the optimized function.

The routine iterates to find the best fit delta function (ix∆ ) for x , y  and z  to minimize

RMS(x ) , RMS(y ) and RMS(z ) respectively. Freedom was given to all 61 wavelengths,
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thus allowing each wavelength to be individually optimized for each weighing function.

The optimized, average color difference obtained by this minimization method is

4.454∆E*
ab. It can be seen from Figure 6.2 that although the average color difference

predicted varied little from that of the un-weighted functions, also, the weighting

functions are jagged and unsuitable as a set of weighting functions.

6.1.3 Constrained Non-linear optimization, using 18 cubic spline functions, delta XYZ

function

This optimization function uses the Levenberg-Marquardt technique, allowing constraints

to be applied to different parameters in the optimization process. The results of

techniques 6.1.1 and 6.1.2 have shown that allowing the optimization to vary all 61

wavelengths yields very jagged curves. To alleviate this, the use of cubic spline functions

are employed. Splines give the benefit of a set of smooth functions being applied to the

original spectra, the splines are shown below:

18 cubic spline functions

The use of splines also reduces the number of degrees of freedom (from 61 to 18)

required in the data to adequately model the delta spectra. The weighted color matching
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functions are then rotated in the cost function to represent the CIE xyz functions and the

color difference calculated.

(6.3)               Emin  Arg      *
rotated ab

18

, , ∆=→+= ∑ j
j

jjiioptimumi        wCwxx

Where ix  is the ith weighting function under evaluation, (x , y , or z ), wj,i is the jth spline

weight for the ith weighting function, and Cj is the jth cubic spline weighing function. Arg

min is the argument of wj that minimizes the color difference between the reference and

sample tristimulus values.

Figure 6.3 : Optimized weighting functions using the Levenberg-Marquardt method with

constraint. In each case the black line represents the CIE standard weighting function, the

colored line the optimized function.
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In order to stop the optimized color matching functions averaging to zero,

(computationally where ∆E*
ab is minimum) a constraint is applied that restricts each

spline weights to ± 1.0 about the CIE functions.

The optimized, average color difference obtained by this minimization method is

2.160∆E*
ab. It can be seen from Figure 6.3 that although the average color difference

predicted was very low, the weighting functions are ‘unrealistic’, and unsuitable as a set

of weighting functions. The tendency of the three functions to approach zero is indicative

of the lower color difference.

6.1.4 Constrained Non-linear optimization, baseline 0, using 18 cubic spline functions,

delta XYZ function

Using the 18 cubic spline functions defined in section 6.1.3, a solution for the optimum

set of color matching function weights was sought that would constrain the difference

functions to all positive values.

0  

(6.4)                 Emin  Arg        

ji,

*
rotated ab,

18

, 

≥

∆=→+= ∑

wwhere

        wCwxx ji
j

jjiioptimumi

Where ix  is the ith weighting function under evaluation, (x , y , or z ), wj,i is the jth spline

weight for the ith weighting function, and Cj is the jth cubic spline weighing function. Arg

min is the argument of wj that minimizes the color difference between the reference and

sample tristimulus values.

In order to stop the optimized difference functions going below zero, each spline

weighting was constrained to ≥ 0. The optimum set of color matching functions are

shown in figure 6.4
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Figure 6.4 : Optimized weighting functions using the Levenberg-Marquardt method with

constraint. In each case the black line represents the CIE standard weighting function, the

colored line the optimized function.

The optimized, average color difference obtained by this minimization method is

2.512∆E*
ab. It can be seen from Figure 6.4 that although the average color difference

predicted was very low, the weighting functions are ‘unrealistic’, and unsuitable as a set

of weighting functions. The tendency of the blue function to inflate the z  responsivity in

the green region is indicative of an unrealistic set of functions.
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6.1.5 Constrained Non-linear optimization, using 18 cubic spline functions, baseline 0,

direct XYZ functions

Using the 18 cubic spline functions defined in section 6.1.3, a direct solution for the

optimum set of color matching functions was sought that would restrict the functions to

all positive values.

0  

(6.5)                 Emin  Arg        

ji,

*
rotated ab,

18

, ,

≥

∆=→= ∑

wwhere

        wCwx ji
j

jjioptimumi

Where ix  is the ith weighting function under evaluation, (x , y , or z ), wj,i is the jth spline

weight for the ith weighting function, and Cj is the jth cubic spline weighing function. Arg

min is the argument of wj that minimizes the color difference between the reference and

sample tristimulus values.

As previously discussed, the weighted spline functions are then rotated in the cost

function to represent the CIE x y z  functions and the color difference calculated. In order

to stop the optimized color matching functions going below zero, a constraint is applied

that restricts the minimum spline weight to 0. The optimum set of color matching

functions are shown in figure 6.5

The optimized, average color difference obtained by this minimization method is

1.076∆E*
ab. It can be seen from Figure 6.5 that although the average color difference

predicted was very low, the weighting functions are ‘unrealistic’, and unsuitable as a set

of weighting functions. The tendency of all of the functions to approach zero is a

characteristic of the low color difference, but by no means a desirable property.
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Figure 6.5 : Optimized weighting functions using the Levenberg-Marquardt method with

constraint. In each case the black line represents the CIE standard weighting function, the

colored line the optimized function. Generated using 18 constrained cubic splines.

6.1.6 Constrained Non-linear optimization, using 4 cubic spline functions, delta XYZ

function

Using the same technique as in 6.1.3, but with only 4 cubic splines instead of 18, the

optimization was again performed.

Whilst evaluating the data it was noticed that the metameric spectra were highly

dependent. This is not desirable since dependent data will have inherent trends build into

the results. In order to alter the color matching functions more accurately, one must

ensure that the number of degrees of freedom in the data is more that the number of
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spline functions, thus only 4 splines are used in this evaluation. The 4 cubic splines are

shown in Figure 6.6 below.

Figure 6.6 : 4 cubic spline functions

The weighted color matching functions are then rotated in the cost function to represent

the CIE x y z  functions and the color difference calculated.

1w1-      where

(6.6)                 Emin  Arg        

ji,

*
rotated ab,

4

, ,

≤≤

∆=→+= ∑ ji
j

jjiioptimumi         wCwxx

Where ix  is the ith weighting function under evaluation, (x , y , or z ), wj,i is the jth spline

weight for the ith weighting function, and Cj is the jth cubic spline weighing function. Arg

min is the argument of wj that minimizes the color difference between the reference and

sample tristimulus values.

Again, a constraint is applied that restricts the spline weight (wj,i) to ± 1.0 about the CIE

functions. The optimized color matching functions are shown in Figure 6.7.
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Figure 6.7 : Optimized weighting functions using the Levenberg-Marquardt method.

Generated using 4 constrained cubic splines, with constraint. In each case the black line

represents the CIE standard weighting function, the colored line the optimized function.

The optimized, average color difference obtained by this minimization method is

4.345∆E*
ab. This value of color difference suggests that although the weighting functions

are smooth, little improvement can be made over the existing set of weighing functions

using only 4 cubic splines.

6.1.7 Linear Regression, using 18 cubic spline functions, delta XYZ function

If one is to consider that the best fit color matching functions would result when ∆X, ∆Y,

and ∆Z (the tristimulus difference between the metameric sample and reference) are at a

minimum, then one can derive a set of linear equations to calculate the change in the
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color matching functions with respect to tristimulus error. The change in each weighting

function (a.k.a. delta function) is constrained by the use of cubic spline functions, as

documented in section 6.1.3.

As before, the optimized color matching functions are based on an existing set, with the

addition of a delta function :

( ) (6.7)              0        
n

k

2
2,1,

,

18
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        Cwxx

Where ix  is the ith weighting function under evaluation, (x , y , or z ), wj,i is the jth spline

weight for the ith weighting function, and Cj is the jth cubic spline weighing function.

jiw ,∂
∂  is the partial derivative with respect to wi,j that leads to the minimum tristimulus

difference between the reference and sample tristimulus values.

Taking the derivative with respect to wi,j, the spline weightings, and using least squares

regression over all samples should yield the weights. The weights calculated for the x

function are shown in Figure 6.8.

Figure 6.8 : Delta x  function derived using linear regression with weighted cubic splines.
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The delta x  function is clearly over predicting the error within the matches. An in depth

analysis led to the conclusion that errors result from a high dependency of the data.

Linear regression assumes that all variables are independent, not so in this case.

Therefore the use of this technique is not based on a solid foundation.

6.1.8 Linear Regression, using PCA basis vectors, delta XYZ function

This analysis looked at the number of eigen-vectors in the difference spectra (spectral

difference between the metameric pair), and found that 4 vectors were sufficient to

describe a high proportion of the variance within the data.

Figure 6.9 : (Top) Variance explained by each of the eigenvectors in the delta x  spectra.

It can be seen that the data is highly dependent, and the majority of variance can be

explained by the last 4 vectors. (Bottom) Plots of the 4 most significant eigenvectors.
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Figure 6.9 shows the variance explained by each eigenvector, and the four vectors that

explain the highest proportion of variance within the delta x  data. Using the assumption

that an optimized set of color matching functions can be derived from a linear

combination of the four principal eigenvectors plus the weighting functions, the same

regression as in section 6.1.7 was performed using the first 4 principal components as the

splines.
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Where ix  is the ith weighting function under evaluation, (x , y , or z ), wi,j is the jth vector

weight for the ith weighting function, and Ci,j is the jth eigenvector for the ith weighting

function. 
jiw ,∂

∂  is the partial derivative with respect to wi,j that leads to the minimum

tristimulus difference between the reference and sample tristimulus values.

Taking the derivative with respect to wi,j, the eigenvectors, and using least squares

regression over all samples yields the weights. The weights calculated for the x , y , and

z  functions are shown in Figure 6.10. The regression was performed without any

constraints.

Optimized Original

x∆ 38.67 14664.73

y∆ 81.87 17350.03

z∆ 0.42 25057.55

∆E*
ab 10.29 4.56

Table 6.1 : Results of Linear Regression with PCA basis vectors. It is evident that the

optimization minimized the tristimulus difference very well, but that does not represent

an adequate minimization of color difference.
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Table 6.1 shows the optimized average tristimulus difference, and color difference

calculated by the regression. It can be seen that although the average tristimulus

difference was minimized very well indeed, no constraints were made that the resulting

functions had to be ‘realistic’ weighing functions. This can be seen both by looking at the

optimized average color difference in Table 6.1, and by looking at the resulting curves in

Figure 6.10.

Figure 6.10 : Optimized weighting functions using linear regression with PCA basis

vectors. In each case the black line represents the CIE standard weighting function, the

colored line the optimized function.
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It is also interesting to note in Table 6.1 that although the tristimulus difference decreases,

the color difference increases from 4.56 to 10.29 ∆E*
ab. This can be explained by the fact

that the optimized weighting functions approach zero.

6.1.9 Linear Regression – I, using Sine and Cosine basis vectors, delta XYZ function

This analysis builds upon the assumption of fourier analysis that states that any wave-

pattern can be decomposed into a collection of sine and cosine waves. Therefore the

regression can be performed using sine and cosine waves as the basis vectors. These basis

vectors are shown in Figure 6.11.

Figure 6.11 : Sine and Cosine waves to be used as basis vectors

Using the assumption that an optimized set of color matching functions can be derived

from a linear combination of the four basis vectors plus the basis functions, the same

regression as in section 6.1.7 was performed using the basis vectors as the splines.
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Where ix  is the ith weighting function under evaluation, (x , y , or z ), wi,j is the jth vector

weight for the ith weighting function, and Ci,j is the jth eigenvector for the ith weighting

function. 
jiw ,∂

∂  is the partial derivative with respect to wi,j that leads to the minimum

tristimulus difference between the reference and sample tristimulus values.

Taking the derivative with respect to wi,j, the eigenvectors, and using least squares

regression over all samples yields the weights. The weights calculated for the x , y , and

z  functions are shown in Figure 6.12. The regression was performed without any

constraints.

Figure 6.12 : Optimized weighting functions using linear regression with Sine and Cosine

basis vectors. In each case the black line represents the CIE standard weighting function,

the colored line the optimized function.
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Table 6.2 shows the results of the minimization. As with the previous part, the average

color difference is very high due to the minimization being optimized for tristimulus

error.

Optimized Original

x∆ 77.87 14664.73

y∆ 1443.75 17350.03

z∆ 970.04 25057.55

∆E*
ab 22.32 4.56

Table 6.2 : Results of Linear Regression with Sine and Cosine basis vectors. It is evident

that the optimization minimized the tristimulus difference very well, but that does not

represent an adequate minimization of color difference.

One can see that the optimized vectors in Figure 6.12 are by no means ‘realistic’, the

resulting vectors approaching an integrated area of zero.

6.1.10 Linear Regression – II, using Sine and Cosine basis vectors, delta XYZ function

This approach uses a similar technique to that in section 6.1.9 but differs in that the

regression minimizes the distance between the pair of tristimulus values and a set of

tristimulus values resulting from a linear combination of the basis vectors, rather than the

tristimulus difference.
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Where ix  is the ith weighting function under evaluation, (x , y , or z ), wi,j is the jth vector

weight for the ith weighting function, and Ci,j is the jth eigenvector for the ith weighting

function. 
jiw ,∂

∂  is the partial derivative with respect to wi,j that leads to the minimum
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tristimulus difference between the reference and sample tristimulus values. Xi,1 is the

tristimulus value of the reference using the ith weighting function, Xi,2 is the tristimulus

value of the match using the ith weighting function. Xi,3 is a vector of tristimulus weights

of the reference integrated against each of the basis vectors, Xi,4 is a vector of tristimulus

weights of the match integrated against each of the basis vectors.

Taking the derivative with respect to wi,j, the eigenvectors, and using least squares

regression over all samples yields the final weights. The weights calculated for the x , y ,

and z  functions are shown in Figure 6.13. The regression was performed without any

constraints.

Table 6.3 shows the results of the minimization. It can be seen that although the

optimized tristimulus differences are larger, the color difference is much more realistic.

Optimized Original

x∆ 17740.62 14664.73

y∆ 18373.20 17350.03

z∆ 30146.77 25057.55

∆E*
ab 6.04 4.56

Table 6.3 : Results of Linear Regression with Sine and Cosine basis vectors. It is evident

that the optimization minimized the tristimulus difference very well, but that does not

represent an adequate minimization of color difference.

One can see that the optimized vectors in Figure 6.13 are much more realistic than the

sets of color matching functions generated in section 6.1.9. Unfortunately the color

difference is larger than the original set of weighting functions.
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Figure 6.13 : Optimized weighting functions using linear regression with Sine and Cosine

basis vectors. In each case the black line represents the CIE standard weighting function,

the colored line the optimized function.

6.1.11  Constrained Non-linear optimization, sum eq. 1, using multiple color matching

functions, direct XYZ functions

Using a similar approach as that defined in section 6.1.3 a solution for the optimum set of

color matching function weights was sought that would utilize existing responsivity

functions. The sum of the weights being constrained to 1.
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Where ix  is the ith weighting function under evaluation, (x , y , or z ), wi,j is the jth weight

for the ith weighting function, and Cj is the jth responsivity function. Arg min is the

argument of wi,j that minimizes the color difference between the reference and sample

tristimulus values.

Figure 6.14 : Optimized weighting functions using multiple sets of color matching

functions. In each case the black line represents the CIE standard weighting function, the

colored line the optimized function.
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The weighted responsivity functions are rotated in the cost function to represent the CIE

x y z  functions and the color difference calculated. In order to stop the optimized color

matching functions going below zero, a constraint is applied that restricts the sum of the

weights to 1. The optimum set of color matching functions are shown in figure 6.14

The optimized, average color difference obtained by this minimization method is

3.921∆E*
ab. It can be seen from Figure 6.14 that the weighting functions are very

realistic, and potentially suitable as a set of weighting functions.

It is clear to see that there are distinct differences between the CIE 1931 color matching

functions and the optimized responsivity functions. Both the x  and z  functions exhibit a

sensitivity shift in the short wavelength region, the y  function has also changed slightly.

6.1.12 Non-linear optimization, using CIE Standard Deviate Observer functions, delta

XYZ functions

Using a similar approach as that in section 6.1.11, a solution for the optimum set of color

matching function weights was sought that would utilize existing standard deviate

observer functions. In order to maintain the shape of the color matching functions, the

optimization was constrained to ± 5 deviation functions about the CIE functions.
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Where ix  is the ith weighting function under evaluation, (x , y , or z ), wi,j is the jth weight

for the ith weighting function, and Cj is the jth responsivity function. Arg min is the

argument of wi,j that minimizes the color difference between the reference and sample

tristimulus values.
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The weighted responsivity functions are rotated in the cost function to represent the CIE

x y z  functions and the color difference calculated. In order to stop the optimized color

matching functions going below zero, a constraint is applied that restricts each weight to

±6. The optimum set of color matching functions are shown in Figure 6.15

Figure 6.15 : Optimized weighting functions using the CIE Standard Deviate observer. In

each case the black line represents the CIE standard weighting function, the colored line

the optimized function

The optimized, average color difference obtained by this minimization method is

3.71∆E*
ab. It can be seen from Figure 6.15 that the weighting functions are somewhat

realistic, and potentially suitable as a set of weighting functions. The main concern being

the sensitivity of the z  function is very low compared to the original CIE function.
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6.1.13 Monte Carlo Method, using Sine and Cosine basis vectors, delta XYZ function

Using the assumption that an optimized set of color matching functions can be derived

from a linear combination of four basis vectors plus basis functions, the monte carlo

method was employed using randomly generated weights for each of the basis vectors.

Sine and cosine basis vectors were used to generate smooth adjustments to the existing

weighting functions. The computation was performed constraining the weights to ± 0.1

about the CIE functions.
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Where ix  is the ith weighting function under evaluation, (x , y , or z ), wi,j is the jth weight

for the ith weighting function, and Cj is the jth responsivity function. Arg min is the

argument of wi,j that minimizes the color difference between the reference and sample

tristimulus values.

Values of wi,j were chosen using a random number generator, assuming a uniform

distribution with CPU time indexed seed. The weighted responsivity functions are rotated

in the cost function to represent the CIE x y z  functions and the color difference

calculated. The optimum set of color matching functions are shown in Figure 6.16

The optimized, average color difference obtained by this minimization method is

4.15∆E*
ab. It can be seen from Figure 6.16 that the weighting functions are realistic, and

potentially suitable as a set of weighting functions. It is interesting to note that the peak

sensitivity of each of the three responsivity functions has increased or decreased to some

degree.
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Figure 6.16 : Optimized weighting functions using Sine and Cosine splines and the

Monte Carlo method. In each case the black line represents the CIE standard weighting

function, the colored line the optimized function.

6.2 Optimization Summary

Of the thirteen techniques mentioned it is immediately clear that techniques i, ii, iii, iv, v,

vii, viii, and ix are unsuitable. Those using the linear regression, minimizing tristimulus

error, could potentially be improved by weighting the radiance spectra with Neugebauers

CQF weighting (Neugebauer 1956, Engeldrum 1993), but one would not expect an

exceptional improvement. The problem is partly related to the fact that an optimal color

space minimizes color difference in a color space, such as CIELAB. The conversion of
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tristimulus values into CIELAB coordinates includes the cube-root non-linear function,

that is not accounted for in the tristimulus minimization.

Other reasons can be attributed to the dependency of the data itself. Ideally, when using a

linear regression technique one assumes that each variable is independent. When using

spectral data an optimization of all wavelengths would require independence of all

wavelengths, this is clearly not the case in the color matches. In Alfvin’s experiment the

color matches were created with a CRT, thus only giving three dimensions in which that

data can vary. The same being true for the Shaw ’98 and Shaw ’99 experiments, matches

being made with only three primaries.

It is evident therefore that an optimization based on minimizing spectral RMS error will

be underdetermined, and produce erroneous results.

Technique Av. ∆E*
ab Decision Technique Av. ∆E*

ab Decision

.i. 2.468
Rejected due to unrealistic

weighting functions
.viii. 10.290

Rejected due to unrealistic

weighting functions

.ii. 4.454
Rejected due to unrealistic

weighting functions
.ix. 22.320

Rejected due to unrealistic

weighting functions

.iii. 2.160
Rejected due to unrealistic

weighting functions
.x. 5.040

Rejected due to increase in

average error

.iv. 2.512
Rejected due to unrealistic

weighting functions
.xi. 3.921

Best, most realistic set

chosen.

.v. 1.076
Rejected due to unrealistic

weighting functions
.xii. 3.710

Rejected due to z  suspect

sensitivity below 500nm.

.vi. 4.345
Rejected due to little

improvement
.xiii. 4.150

Acceptable result, slight

improvement over CIE

.vii. N/A
Rejected due to unrealistic

weighting functions

Table 6.4 : Summary table of the results of each different set of

optimized weighting functions.
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Of all the approaches shown in Table 6.4, technique xi performed the best. It did not yield

the lowest color difference of all the techniques, but it did yield the most reasonable color

difference and most realistic set of weighting functions. The final set of functions can be

seen in Figure 6.17, resulting in an average color difference of 3.921∆E*
ab over all

samples.

Technique .xi.

CIE 1931 Observer

Figure 6.17 : Final selection of optimized color weighting functions
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7 COMPUTER SIMULATION

In order to simulate the differences found in the different sets of responsivity functions, a

computer simulation was designed using a characterized CRT. This chapter documents

the computer simulation user interface and the characterization approach taken. The

explicit techniques used to characterize the CRT are not documented, interested readers

are directed to the work of Berns (1996), CIE (1996), and Berns et al (1993).

If one is to conceptualize a visual experiment in which an observer is seated in front of a

viewing booth and CRT, see Figure 7.1. A spectro-radiometer is positioned by the

observers left shoulder, measuring the radiance of samples positioned in the booth.

CRT

Viewing Booth

Spectroradiometer
Observer

Figure 7.1 : Conceptual visual experiment. Observers comparison of various sets of

responsivity functions
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The observer places a sample in the viewing booth, under the controlled viewing

conditions and measures the spectral radiance of the sample. The sample spectra is then

passed to the computer and the simulation program displays the predicted CRT

metameric match for that spectral radiance, using a spectral CRT model and each set of

rotated responsivity functions.

The observer then looks at the predictions of each set of responsivity functions and can

distinguish the differences between predictions.

7.1 Spectral Characterization of CRT

In order to model the CRT, enabling one to display the results of different sets of

responsivity functions it was important to measure the CRT spectrally. Measuring the

CRT primaries using a tristimulus colorimeter is insufficient since a characterization of

the primaries must be done relative to each set of responsivity functions. Therefore,

Figure 7.2 outlines the process involved in characterizing the display for each set of

weighting functions.
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Figure 7.2 : Characterization outline of CRT display using multiple sets of

responsivity functions
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The spectral radiance of each primary, flare characteristics, and channel crosstalk

properties were measured using a Photo-Research PR650 spectro-radiometer

incorporating a half-height triangular bandpass of 4nm, recorded the spectral radiance at

4nm wavelength intervals across the visible spectrum between 380 and 780 nm.

Using each set of responsivity functions rotated into CIE representation, the tristimulus

values were calculated. Then, for each set of tristimulus values, the CRT model is

performed. First subtracting the flare, building the flare free XYZ to RGB transform

matrix, then determining the GOG model parameters.

When the software application is used, the spectral radiance of the sample is treated in a

similar fashion, shown in Figure 7.3.
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Figure 7.3 : Computational prediction of an input spectra using the 7 responsivities

The spectral radiance data is first used to calculate tristimulus values for each set of

rotated responsivity functions. Each set of tristimulus values then has the flare subtracted

by its respective flare measurement. The different sets of flare free tristimulus values are

then transformed into RGB scalars using the respective transform. The GOG model then

converts each set of RGB scalars into RGB dac’s to be displayed by the application.
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7.2 Software Simulation Package

The simulation was written in IDLΨ, the code can be found in Appendix 7. When

launched, the application displays a start up screen welcoming the user to the application,

shown in Figure 7.4.

Figure 7.4 : Simulation welcome screen

When ready, the user clicks continue and the main control window is displayed, shown in

Figure 7.5. The user must first select the type of spectral data being used, Radiance or

Reflectance.

When Radiance is selected, clicking on the load spectral data button opens up a file

selector window in which the user can load the specific spectral data file desired. The

files are automatically sorted by extension and ‘.rad’  files are considered to be spectral

radiance data files.

                                                

Ψ IDL is a registered trademark of Research Systems, Inc. IDL, the Interactive Data Language, is software

for data analysis, visualization, and cross-platform application development. For information go to the IDL

home page : http://www.rsinc.com/

http://www.rsinc.com/
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When Reflectance is selected, the Reference Illuminant selector becomes active, shown in

Figure 7.7. The user must both select the illuminant, and load the spectral reflectance data

file to be displayed. The files are automatically sorted by extension and ‘.ref’  files are

considered to be spectral reflectance data files.

Figure 7.5 : Main Control Window - User selection of spectral data file. User selects

either radiance or Reflectance spectral data, and can then load a data file from disc.

Figure 7.6 : Main Control Window - User selection of spectral data file. When

Reflectance is selected the user must also specify the illuminant under which the sample

is viewed.
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Due to reflectance factor data being relative measurements, the absolute tristimulus

values are not known. Therefore the illuminant white point is a assumed to be Y=100,

and the transformation matrices constrained respectively.

When the spectral data file has been selected, the user the clicks the continue button. The

main control window disappears and the prediction window opens, encompassing the

whole screen. Shown in Figure 7.7.

Figure 7.7 : Prediction Window - Simulation prediction of each of the 7 responsivity

functions. It can be seen that subtle differences are noticeable.

When the user clicks on the continue button the spectral data file is used to calculate

tristimulus values under each set of responsivity functions. The CRT model discussed

earlier is then used to calculate the RGB digital counts (dac’s) that will yield a
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colorimetric match to the measured spectral data. The RGB dac’s for each patch are then

displayed in their respective position.

If for some reason the measured spectral reflectance or radiance is out of the gamut of the

display, then a gamut warning is displayed in place of the color, shown in Figure 7.8.

Figure 7.8 : Prediction Window - When a tristimulus value to be displayed is out of

gamut of the CRT, a gamut warning is presented to the user instead.

The user can then either click Return to return to the main control window and select

another spectral data file, or Quit to exit the application.
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7.3 User Experiences

Although it is impossible to show the simulation in this report, one can comment on the

phenomenology of the program. Sharing observations based upon users own color vision

as to which set of color matching functions performs best.

Running the simulation was quite straightforward. Users picked spectral data files, both

radiance and reflectance, from a previously determined set of measurements, and then

displayed the calibrated color from each set of weighting functions. It is important to note

that different spectra performed differently, even if they appeared similar under controlled

viewing conditions, as was expected. For example, two grays of similar color appearance

had a very different spectral profile. One was a Munsell Neutral gray card (N5), having a

very flat spectrally non-selective profile, the second gray was imaged using a Fujix

Pictrography. Both samples resulted in an L*=50, and a*=b*=0 when viewed under D65

controlled viewing conditions. When displayed on the simulation the perceived relative

differences were greater for one of the samples than for the other. The spectral profile

being the major contributory factor.

In general the color predictions showed similar characteristics, although of different

magnitudes for each stimuli. The results of the CIE 1964, and Shaw and Fairchild color

matching functions tended to be similar, and the predictions of the others again were

similar. For example, when looking at a gray sample, the CIE 1964, and the Shaw and

Fairchild set looked slightly greenish, whereas the other predictions were all slightly

reddish. Although, when looking at a pale green sample, only the CIE 1964 functions

were significantly different, looking slightly darker.
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8 CONCLUSIONS

A computational analysis was performed to evaluate the 1931 color matching functions

against other responsivity functions using metameric data. The underlying principle is

that an optimal set of responsivity functions will yield minimal tristimulus error between

a pair of visually matched metamers.

In order to be able to compare the performance of the different responsivity functions a

common color space was used in which the results could be compared. The common

color space was CIELAB, based upon the CIE 1931 2° standard observer functions. The

five other responsivity functions were transformed using a linear rotation matrix into near

CIE approximations. The rotated functions were then used to calculate the pseudo

tristimulus values for each set and the CIELAB coordinates.

Color differences were calculated between the pair of CIELAB coordinates using the

standard ∆E*
ab, and ∆E94 color difference formulae.

The difference of average color differences found in the six chosen sets of responsivity

functions were small. The CIE 1931 2° color matching functions, on average, provided

the largest color difference, 4.56 ∆E*
ab. With the best performance coming from the CIE

1964 10° color matching functions, yielding an average color difference of 4.02 ∆E*
ab.

An optimization was then performed on the CIE 1931 color matching functions. The

concept was that color differences between metamers can be used to improve predictions

of color matching functions. If one is to take all pairs, and perform an optimization that
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globally minimizes the average color difference, then one can hope to obtain an optimal

set of responsivity functions.

A total of thirteen optimization techniques were tested, but only two were found that

were capable of both maintaining the integrity of the color matching functions, and

reducing the average color difference. The optimum solution was to use a weighted

combination of each of the different sets of responsivity functions chosen in chapter 2.

The optimized set, the ‘Shaw and Fairchild’ responsivity functions, were able to reduce

the average color difference down to 3.92 ∆E*
ab.

An important lesson was learnt during performing the optimizations. It is possible for one

to describe what one would like the optimization to do, but one must also know how to

program the computer to perform this optimization and the constraints that are to be

applied. For example, maintaining the integrity of the color matching functions may

include constraining the area under each function, not allowing a function to go negative,

minimizing noisy adjustment to the functions by ensuring smooth modifications are

made. These are all concepts that are easy to grasp and contemplate, but formulating

these concepts in mathematical terms is not so straightforward.

The final part of the work was to build a computer based simulation of the color

differences between the different sets of responsivity functions. This simulation allows a

user to load a spectral radiance, or reflectance, data file and display the tristimulus match

predicted by each of the seven sets of responsivity functions.

This work provides insight into many areas of color science. One can conclude from the

work that the work of the CIE has stood its ground for the last sixty years, and is still,

without doubt, a standard that performs well when compared with more recent research.
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It is clear that the standard is not perfect, having its areas of weakness that some are very

ready to criticize.

It was found that the magnitude of observer variability was nearly eight times that of the

variability found between the responsivity functions. One should be more concerned with

the problems introduced by observer metamerism than the accuracy of the CIE 1931

functions themselves.



. 92 .

REFERENCES

Alfvin R, (1995) ‘A computational analysis of observer metamerism in cross-medi color

matching,’ MSc Thesis, Munsell Color Science Laboratory, Rochester Institute of

Technology

Brill M.H, (1998) ‘Report on Improved Colorimetry to ISCC Board of Directors – October

1998,’ ISCC News, No 376, November/December 1998

Berns R.S, Motta R.J and Gorzynski M.E. (1993) ‘CRT Colorimetry. Part I: Theory and

Practice,’ Col. Res. Appl., 18, No. 5, pp. 299-325

Berns R.S, (1996) ‘Methods for characterizing CRT displays,’ Displays, 16, No. 4,

pp. 173-182

CIE, (1986) ‘Colorimetry,’ 2nd Ed., Central Bureau of the CIE, Vienna,

CIE Publication No. 15.2

CIE, (1996) ‘The relationship between digital and colorimetric data for computer-controlled

CRT displays,’ Central Bureau of the CIE, Vienna, CIE Publication No. 122

Engeldrum P. G, (1993) Color scanner colorimetric design requirements. SPIE. 1909,

pp.75-83

Estevez O, (1979) ‘On the Fundamental Data-Base of Normal and Dichromatic Color

Vision,’ Thesis, University of Amsterdam, Krips Repro, Meppel

Estevez O, (1982) ‘A better Colorimetric Standard Observer for Color Vision Studies: The

Stiles and Burch 2° Color Matching Functions,’ Col. Res. Appl., 7, No. 2, pp. 131-134

Fairchild M.D, (1998) ‘Color Appearance Models,’ Addison Wesley, Reading,

Massachusetts, USA

Guild J, (1931) ‘The Colorimetric Properties of the Spectrum,’ Phil. Trans. Roy. Soc.

(London), A 230, p. 149-187



. 93 .

Ives H.E, (1923) ‘The transformation of color-mixture equations from one system to another,’

J. Franklin Inst., vol 180, pp. 673-701 (1915) and vol 195, pp. 23-44 (1923)

Judd D.B, (1951) ‘Colorimetry and Artificial daylight,’ Proc. 12th session CIE, Stockholm, I ,

Tech. Committee No 7, p. 11

Kuo W.G. and Luo M.R, (1996a) ‘Methods for quantifying metamerism. Part 1 – Visual

assessment,’ JSDC, 112, pp. 312-320

Kuo W.G. and Luo M.R, (1996b) ‘Methods for quantifying metamerism. Part 1 –

Instrumental Methods,’ JSDC, 112, pp. 354-360

North A, (1991) ‘Investigation of observer variability using a new method for determining

color matching functions,’ MSc Thesis, Munsell Color Science Laboratory, Rochester

Institute of Technology

Neugebauer H. E. J, (1956) Quality factor for filters whose spectral transmittances are

different from color mixture curves and its application to color photography, Jour. Opt.

Soc. Amer. 46, No. 821, pp. 821-824

Ohta N, (1983) ‘Optimization of Spectral Sensitivities,’ Photographic Science and

Engineering, 27, No. 5, pp. 193-201

Shaw M.Q and Montag E.D, (1998) ‘Analyzing Observer Metamerism,’ Color Measurement

Laboratory Project, Munsell Color Science Laboratory, Rochester Institute of

Technology

Shaw M.Q and Montag E.D, (1999) ‘Analyzing Observer Metamerism,’ Color Measurement

Laboratory Project, Munsell Color Science Laboratory, Rochester Institute of

Technology

Smith V.C and Pokorny J, (1975) ‘Spectral sensitivity of the foveal cone photopigments

between 400 and 500nm,’ Vision Research, 15, pp. 161-171

Smith V.C, Pokorny J and Q. Zaidi, (1983) ‘How do sets of color matching functions differ?’

in Colour Vision: Physiology and Psychophysics, J.D. Mollon and L.T. Sharpe, eds.

Academic Press, London

Stiles W.S. and Burch J.M, (1955) ‘Interim report on the Commission Internationale de

l’Eclairage, Zurich, on the National Physical Laboratory’s Investigation of Colour

Matching,’ Optica Acta, 2, pp. 168



. 94 .

Stiles W.S. and Burch J.M, (1959) ‘NPL Colour Matching investigation: Final Report,’

Optica Acta, 6, pp. 1-24

Stockman A, Macleod D.I.A and Johnson N.E, (1993) ‘Spectral sensitivities of the human

cones,’ Optical Society of America, 10, No 12, pp. 2491-2516

Stockman A, Sharpe L.T, (1998) ‘Human cone spectral sensitivities: a progress report’,

Vision Research, 38, 19, pp. 3193-3206

Stockman A, Sharpe L.T, (1999) ‘Cone spectral sensitivities and color matching,’ Yet to be

published

Thornton W.A, (1992a) ‘Toward a more accurate and extensible colorimetry. Part 1 –

Introduction. The visual Colorimeter-Spectroradiometer. Experimental results,’ CR&A,

17, No.2, pp. 79-121

Thornton W.A, (1992b) ‘Toward a more accurate and extensible colorimetry. Part II –

Discussion,’ CR&A, 17, No.3, pp. 162-186

Thornton W.A, (1992c) ‘Toward a more accurate and extensible colorimetry. Part III -

Discussion,’ CR&A, 17, No.4, pp. 240-262

Thornton W.A, (1997) ‘Toward a more accurate and extensible colorimetry. Part IV – Visual

experiments with bright fields and both 10° and 1.3° field sizes,’ CR&A, 22, No.3, pp.

189-198

Thornton W.A, Fairman H.S, (1998a) ‘Toward a more accurate and extensible colorimetry.

Part V – Testing visually matching pairs of lights for possible rod participation on the

Angular-Stiles model,’ CR&A, 23, No.2, pp. 92-103

Thornton W.A, (1998b) ‘Toward a more accurate and extensible colorimetry. Part VI –

Improved weighting functions. Preliminary results,’ CR&A, 23, No.4, pp. 226-233

Vos J.J, (1978) ‘Colorimetric and Photometric Properties of a 2° Fundamental Observer,’

Col. Res. and Appl., 3, No. 3, pp. 125-128

Vos J.J and Walraven P.L, (1971) ‘On the derivation of the foveal receptor primaries,’

Vision Research, 11, pp. 799-818

Vos J.J, Estevez O, and Walraven P.L, (1990) ‘Improved color fundamentals offer a new view

on photometric additivity,’ Vision Research, 30, No. 6, pp. 937-943



. 95 .

Wright W.D, (1928-29) ‘A re-etermination of the trichromatic coefficients of the spectral

colours,’ Trans. Opt. Soc. 30, pp. 141-161

Wright W.D, (1981) “50 Years of the 1931 CIE Standard Observer for Colorimetry,” AIC

Colour 81, Paper A3

Wyszecki G, (1973) “Current developments in colorimetry,” AIC Colour 73, pp. 21-51

Wyszecki G, and Stiles W.S, (1982) ‘Color Science: Concepts and Methods, Quantative

Data and formulae,’ John Wiley & Sons, New York, USA, 2nd Edn


	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	Table of Tables
	Table of Figures
	1. Introduction
	Colorimetry
	CIE 1931 Color Matching Functions
	Stiles and Burch Color Matching Functions
	Thornton Color Matching Functions

	Cone Spectral Sensitivities
	Vos and Walraven
	Smith and Pokorny
	Stockman, Macleod and Johnson
	Stockman and Sharpe

	Current Research

	2. Responsivity Function Selection
	Selected Sets
	CIE 1931 Color Matching Functions
	CIE 1964 Color Matching Functions
	Stiles and Burch Color Matching Functions
	Demarco, Smith and Pokorny Fundamentals
	Stockman, MacLeod and Johnson Cone Fundamentals
	Vos and Walraven

	Rejected Responsivity Functions

	3. Experimental Data Sources
	Experiment 1 - Alfvin and Fairchild (1995)
	Experiment 2 - Shaw and Monthag (1998)
	Experiment 3 - Shaw and Montag (1999)
	Experimental Discussion

	4. Comparing the Accuracy of Various Data Sets
	Rotation to near CIE space
	Tristimulus Calculation
	CIELAB Representation
	Observer Variability
	Statistical Analysis
	Students t-test
	Multivariate 95% Confidence Ellipse


	5. Computational Analysis Results and Discussion
	Alfvin Data Set
	Combined Alfvin Data Set
	Segmented Alfvin Data Set

	Lab '98 and '99 Data Sets
	All Three Data Sets Combined
	Thornton Metameric Pair
	Derivation of Optimized Responsivity Functions

	6. Deriving an Optimized Set of Responsivity Functions
	Techniques Used
	Optimization Summary

	7. Computer Simulation
	Spectral Characterization of CRT
	Software Simulation Package
	User Experiences

	8. Conclusions
	References

